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ABSTRACT

MULTIMODAL MOLECULAR REPRESENTATION

LEARNING FOR PROPERTY PREDICTION

Tristan Maughan
Department of Physics

Bachelor of Science

Artificial intelligence-based molecular representation learning may allow Al
to accurately predict the chemical properties of molecules and thereby help
facilitate drug discovery by reducing the need for physical experimentation.
However, most existing representation learning approaches rely on only a sin-
gle data-type to represent inputs such as molecular graphs, images, etc. Novel
research on the use of multimodal models (using multiple data types) have
already shown promise in improving Al’s predictive abilities. Of the many
data type combinations that exist, notably little research has been done on
the unification of molecule-graphs and molecular text-descriptions. The pur-
pose of this study is to investigate the hypothesis of whether an Al model
that is trained on unified encodings of graph and text data outperforms Al
models trained only on one of such data types. To date, this study remains

in progress, and significant progress has been made only towards the devel-






opment of our E(n)-Equivariant Graph Neural Network-based graph encoder.
This model is trained to predict molecular properties using a curated subset
of the MolTextNet dataset. Evaluation of the encoder showcases its adequate
predictive abilities, making for a strong checkpoint towards the completion of

this study.
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Chapter 1

Introduction

The field of drug discovery plays a crucial role in advancing global health. Through
the combined efforts of researchers, clinicians, and engineers, vaccines, therapeutic
compounds, and life-saving drugs have been successfully developed and deployed,
improving the well-being of countless individuals. However, the process of discovering
effective drugs is neither fast nor cheap. It typically involves years of iterative testing,
with high attrition rates as candidate compounds fail due to poor pharmacological
properties. As a result, researchers continue to explore ways to improve the efficiency
and accuracy of this process.

In recent years, artificial intelligence (AI) has emerged as a promising tool for
accelerating drug discovery. One major application is molecular property prediction,
where Al models learn to forecast chemical properties of potential drug-candidates
directly from molecular data. These models can significantly reduce development
costs and time by filtering out unsuitable candidates early in the pipeline.

To date, most AI models for molecular property prediction have focused on uni-
modal learning, or learning from only a single type of data representation. For

reference, examples of data types that Al neural networks are often designed to inter-
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pret include human language, images, and many other forms of information. While
effective, unimodal models are inherently limited by the scope of the representation
provided by the singular data type that is being interpreted. Essentially, for any
given subject, there is an unknown amount of useful information that could poten-
tially be “understood” by an Al neural network, but the Al will be limited by how
much of that information can be accurately represented by the data provided to the
Al Hypothetically, different forms of data on the same subject will likely excel in
conveying different aspects of the nature of the subject, at least to some degree. It
stands to reason, then, that an Al model might perform better in “understanding” a
given subject if it can interpret and combine multiple differing data representations

of that subject.

Traditional Trial and Error Methods
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Figure 1.1 While traditional methods lead to high attrition through late-
stage failures, predictive Al could enable early filtering and higher clinical
success rates.

In recent years, researchers have begun developing multimodal models to capi-
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talize on the representational complementarity among differing data types. These Al
models are designed with the capacity to interpret multiple differing representations
of the same subject and unify those interpretations in a manner that forms a richer,
more expressive “understanding” of the subject. While early results have demon-
strated the promise of multimodal learning for drug discovery, many fundamental
questions remain. For instance, it is still unclear which combinations of data rep-
resentations tend to offer the greatest performance gains, and how best to integrate
and unify them within unified architectures.

This ongoing study aims to contribute to this area of research by developing and
evaluating a multimodal deep learning software framework that integrates two distinct
molecular data representations based on two independent data modalities. These
modalities are (1) molecular graphs with 3D atomic positions, and (2) human language
descriptions. The first modality involves representing molecules in the form of graphs
where the atoms and the atom-to-atom bonds of a given molecule are represented
by nodes and edges, respectively. The second modality simply involves representing
molecules with thorough text descriptions readable by humans. To our knowledge,
relatively little work has explored this particular combination of data inputs, making
it a promising direction for novel investigation. The ultimate hypothesis of this study
is that an Al framework that integrates the two aforementioned data modalities will
perform better than a unimodal AI model based on either modality alone.

As mentioned, this study is ongoing with only partial implementation of the full
multimodal framework completed at this time. (Elaboration of what has been com-
pleted and what remains for future work will be given shortly, but for context, a
description of the architecture will be provided first.) The full software architecture
“blueprint”, so to speak, consists of three component neural networks (Al models).

These three components include a Graph Neural Network (GNN) (Kearnes et al
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(2016) [1]), a customized Large Language Model (LLM) (think human-language neu-
ral network), and a Multilayer Perceptron (MLP). The GNN and customized LLM
components are intended to be fully functional unimodal neural networks when uti-
lized independently of each other and the rest of the framework—both models should
be capable of producing reasonably accurate predictions of chemical properties asso-
ciated with a given molecule. The MLP’s role is to combine the interpretations of the
GNN and the LLM and compress them into a single interpretation that will produce
its own predictions of the same properties. In alignment with our hypothesis, we ex-
pect these final predictions to achieve greater accuracy than either of the component
neural networks alone.

Thus far, only the GNN component of the full architecture has been successfully
implemented. The customized LLM and the MLP components remain in develop-
ment, and therefore, neither can be appropriately evaluated at this time. Addition-
ally, without these components, the ultimate hypothesis of this study cannot yet be
tested. With these things in mind, the intentions for this paper are to detail the meth-
ods and experimental results of the GNN component alone, with only mere mention
of the LLM and MLP components where helpful.

Thorough evaluation of the performance of Al neural networks often involve anal-
ysis of many aspects such as predictive accuracy when the model is optimally trained,
the number of training iterations needed to reach optimal accuracy, inference cost and
speed (the computation and time required for the model to produce results), model
size and memory footprint, and others. As this study remains incomplete, only met-
rics of two of these aspects are gathered and analyzed—particularly, the accuracy, or
correctness, of the model’s predictions (after optimal training); and the number of
training iterations required to provide the model with optimal training. Further de-

tailing of the evaluation process for the GNN model is provided in the Experiment



chapter.

For the reader’s benefit, a brief, largely qualitative preview of the experiment
and results achieved by our GNN model is given: Our process of testing our Graph
Neural Network model can be boiled down to a few important steps. First, we trained
the model on a handful of arbitrary chemical properties across 100,000+ arbitrary
molecules until the neural network reached a state where further training yielded
no further improvement in its predictive ability (in this context, this optimal state
coincides with the model’s training and validation convergence). Second, we tracked
the number of training iterations that produced this convergence. Finally, we tested
the converged model’s ability to predict the same arbitrary chemical properties used
in training, but for 2,000+ molecules that were never revealed to the model during
its training. Through this process, we found that our GNN model converges to its
optimal state in 23 training iterations. Additionally, the testing of our optimized
GNN model’s predictive accuracy revealed strong correlation between the values of
its predictions and the associated ground-truth (or actual) values. An average R?

score of 0.954 was achieved across all of the arbitrary chemical properties.
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Chapter 2

Method

In this ongoing study, we design the general software structure of a unified neural
network model architecture that can be viewed in two layers. The first layer involves
the production of two separate chemical-property prediction vectors made by two
independent neural networks. The second layer involves, first, concatenation (com-
bining) of those prediction vectors into a single, larger vector, then, inputting that
vector into a Multilayer Perceptron (MLP), and finally, obtaining a final prediction
vector from the MLP based on the two data representations used in the first layer
of the architecture. (Note: An MLP is a basic neural network that processes an in-
put vector of some kind and computes a new output vector dependent on learnable
patterns found in a dataset of related input vectors).

The data modalities used as the basis of the representations for the two neural
networks comprising the first layer of the architecture are graph-based data and text-
based data, respectively. As has already been hinted at, the predictions made by
the neural networks are outputted in the form of vectors. Within the context of
our architecture, the output vector of a neural network is an n-dimensional vector,

where n is equal to the number of regression targets (the number of properties being
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Molecular Graph MLP

‘\H/ \H> Concatenate

_»

Textual Description

Ethanol is an organic
compound with the ———» LLM
chemical formula
CH3CH:20H. It is a volatile,
flammable, colorless liquid
with a characteristic wine-
like odor and pungent taste.

Figure 2.1 Depiction of the full architecture, where graph (EGNN) and text
(LLM) interpreters feed concatenated outputs into a unifying neural network
(MLP) to produce a multimodally based prediction.

predicted). The scalar values within the vector are the neural network’s predictions
for the regression targets (each scalar value is associated with one unique target). The
graph-based modality represents molecules in the form of graphs, where the atoms of
a molecule are treated as nodes and the atom-to-atom bonds are treated as edges. The
text-based modality represents molecules in the form of human language descriptions
(text descriptions readable by humans) unique to each molecule.

While the full architecture consists of the three mentioned major components—a
graph-interpreting Al, a text-interpreting Al, and a unifying MLP—significant progress
has only been made on the graph-interpreting AI. Thus, the remainder of this paper
will elaborate further on only that component.

To make adequate interpretations of the graph-based data, we employ a special-
ized version of a GNN called an E(n)-Equivariant Graph Neural Network (EGNN).

Typically, a GNN interprets graph-structure in a manner that neglects the specific
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physical positioning of nodes for a given graph subject, or, in our case, the physical
positioning of atoms relative to one another within a given molecule. In other words,
while the GNN can interpret which atoms are chemically bonded to one another, it
cannot interpret information regarding the proximity of atoms relative to each other.
On the other hand, the E(n)-EGNN can interpret both the atom-bond graph struc-
ture of the entire molecule and the physical proximity of each of the constituent atoms
(relative to each other).

The EGNN architecture used in this study follows the message-passing scheme
introduced by Satorras et al. (2021) [2], which extends traditional graph convolu-
tional networks found to handle geometric data while preserving equivariance to E(n)
transformations such as translation, rotation, and reflection. In this scheme, node
representations are iteratively updated by aggregating information from neighboring
nodes. FEach node begins with an initial feature vector representing an arbitrary set
of attributes (the same attributes must be used for each node), and with each layer,
these features are updated based on the representations of neighboring atoms.

As mentioned, the key innovation of the EGNN lies in its treatment of spatial
geometry in addition to the typical graphical geometry. Utilizing the same message-
passing algorithm for node features, the model also maintains a separate set of 3-D
coordinates for each node, representing absolute atomic positions in an z-y-z format.
These coordinates are incorporated into the message-passing mechanism in a relative
manner, making use of only the difference between node positions, and never abso-
lute positions. This is important because the interpretation of the EGNN can only
be consistent (irrespective of any arbitrary absolute atomic coordinates) if relative
positions are wholly used in the message-passing mechanism. The node positions, in
addition to the node features, are also updated at each layer. This design allows the

model to jointly learn from both atomic identities and molecular geometry, enabling
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more accurate predictions of structure-dependent properties.



Chapter 3

Experiment

To evaluate the performance of our EGNN-based graph-data interpreter, we consid-
ered two major aspects of performance: (1) the progression of training and validation
loss over training iterations, and (2) the predictive accuracy of an optimally trained
model. Before moving on, several terms warrant for the provision of their defini-
tions. “Loss” is a measure of the average error per prediction for a given iteration.
“Training” is the process of “teaching” an Al model the patterns that exist among
the samples of the dataset that it trains on. Essentially, the model makes a prediction
for each sample in the dataset, and then, depending on the degree of error among its
predictions against their associated actual values (called ground-truths), the model
has its parameters tuned to prepare it to make a better prediction in the future.
“Validation” is the process of testing how well the model generalizes to data that it
is not training on. A separate dataset is used for validation, and the model does not
tune its parameters according to error against the validation set to ensure that the set
continually acts a general representation of non-training data. For reference, training
loss and validation loss are both calculated using the Mean-Squared-Error (MSE)

algorithm, or the average of the squared errors across all samples in the dataset.

11



12 Chapter 3 Experiment

Predictive accuracy of the model is assessed using standard regression metrics,
including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the
coefficient of determination (R?). RMSE is similar to MSE, except it applies a square-
root to the MSE result. MAE is the average of the absolute errors across all samples.
R? is a measure of how well the model explains the variance in the dataset. The

equation for calculating R? is

R sumof squarederrors (4 — yi)?
- total variance Xy —9)?

where ¢; is the predicted value, y; is the actual value, and 7 is the average of all of
the actual values.

The EGNN model is trained, validated, and tested on curated subsets of the
MolTextNet dataset [3]. Provided herein are qualitative visualizations of predicted

values versus actual (or ground-truth) values for select regression targets.

3.1 MolTextNet Dataset Curation

For training and evaluation of our EGNN model, we selected the MolTextNet (MTN)
dataset—a dataset of 2.5 million molecular samples where each sample has an associ-
ated SMILES string and a thorough text-description. A SMILES (Simplified Molec-
ular Input Line Entry System) string is a string of characters that communicate the
graph layout of atomic bonds within a molecule. For example, carbon monoxide (CO)

“w__»

is written as C=0, where the character represents a double bond. Due to mem-
ory and runtime constraints, a subset of MTN was compiled to include only the first
200,000 samples (about 8% of the 2.5 million total samples). These samples, after

undergoing filtering and cleaning, were reduced to a final dataset of 155,241 samples,

representing approximately 6.2% of the full MTN dataset.
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From our custom MTN dataset, each sample was processed into a PyTorch-

Geometric (PyG) ‘Data‘ object containing the following PyTorch ‘tensor objects:

x: A 10-dimensional vector containing arbitrary atom-level node features [x =

(atomic number, atomic mass, ...)]

e pos: A 3-dimensional vector containing 3-D spatial coordinates of atoms (pos

= (2,9, 2))

e edge_index: A 2 x F matrix (where F is the number of atomic bonds) rep-
resenting bond connectivity between atoms (source atoms in the first row are

aligned with target atoms in the second row, using indices)

e y: A 5-dimensional regression target vector extracted from the text. Put an-
other way, y is a vector that contains the actual property values against which

our model’s predictions can be compared [y = (1, Y2, Y3, Y4, Y5 )]

e text: A string of the full molecule description (e.g., “Ethanol is an organic

compound with the chemical formula...”)

e mask: A vector of the same shape as, and coinciding with, y that indicates which
target (actual) values are hidden within the text to prevent the Al model from
using the text description to explicitly obtain exact chemical property values.
A 1 represents a visible value, and a 0 represents a hidden value. [Example:

mask = (0,1,1,0,1)]

As samples from the MTN dataset do not directly provide graphs, we used an
open-source cheminformatics software toolkit, called RDKit [4], to convert SMILES
strings directly into molecular graphs and to generate approximate 3-D atomic posi-

tions for all atoms in each molecule. This conversion and generation process allowed
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for the creation of the pos and edge_index tensors. Anytime RDKit determined a
SMILES string to be invalid (ie. it did not recognize the string) or it failed to gen-
erate 3-D positions, the sample was skipped and excluded from the dataset. For all
molecules deemed valid, RDKit featurized their atoms (or provided a list of 10 atomic
features associated with each atom. We made the choice of which 10 features to use
arbitrarily). This allowed for the creation of the x tensor. Note: The algorithms that
RDKit employs to generate 3-D positions and perform featurization are beyond the
scope of this study.

Actual chemical property values for making predictions against were not explicitly
provided in the dataset. Fortunately, there were multiple property values consistently
embedded within the molecule descriptions. To create the y tensor, the vector of
regression targets, we extracted the actual values within each text using a keyword-
based parser algorithm. The algorithm searched each description for target-specific
keywords and phrases (such as “molecular weight” and “logp”, etc.) and extracted
the next numerical value enclosed in <number>. ..</number> tags (provided by the
authors of MolTextNet). If one or more target values were missing or improperly
formatted (ie. the algorithm failed to identify the value), the sample was excluded. A
probabilistic masking scheme was then applied to obscure certain values in the text,
and a corresponding binary mask vector was generated to indicate which targets were
visible in the description.

Neither our algorithm nor each description were perfect, so incorrect values were
occasionally extracted. To help ensure that these values did not interfere with the rest
of the dataset, all entries where any two or more target values were identical were
excluded, as this was very likely an indication that the text displayed a duplicate
numerical value for two unrelated chemical properties. Next, to identify samples with

at least one target value that would be considered an extreme outlier, distribution



3.2 Implementation of the Graph-based Interpreter 15

analysis was performed on each target. Specifically, only samples with all 5 regression
target values between the 1st and 99th percentiles of each target distribution were
retained. After completion of the entire curation process described throughout this
section, the final filtered dataset consisted of 155,241 valid entries, or about 45,000

less samples than the original set of 200, 000.

3.2 Implementation of the Graph-based Interpreter

We implemented a custom E(n)-Equivariant Graph Neural Network (EGNN) model
using the publicly available egnn_pytorch module developed by Lucidrains [5], which
provides a PyTorch-based F(n)-equivariant message-passing scheme. The model ar-
chitecture consists of an input projection layer, a configurable sequence of EGNN
layers, a dropout layer, and a final output projection layer. The input layer maps ini-
tial atomic feature vectors to a fixed hidden dimension, and each EGNN layer jointly
updates both node features and 3D spatial coordinates through equivariant message
passing. A non-linear activation is applied after each EGNN layer (without going
into unnecessary detail, non-linearity within the parameters of the neural network is
necessary to allow it to detect meaningful patterns). The final learned node repre-
sentations are masked to exclude padding nodes, normalized based on the number of
active nodes, and passed through a dropout layer before being projected to a vector
of scalar outputs via the final linear layer. The output dimension corresponds to the
number of chemical properties being predicted. In this study, we arbitrarily chose five
properties to evaluate our model with (the common availability of these properties
throughout MTN text-descriptions had influence on this choice). These properties
are molecular weight, Log P, Polar Surface Area, Synthetic Complexity Score (SCS),

and Synthetic Accessibility Score (SAS). Per the scope of this study, let it be known
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that the reader need not know the exact meanings of these terms, but only that each
is a chemical property commonly associated with molecules.

Due to implementation constraints, input batches were transformed from PyG’s
default sparse format (XN, F') to a dense batch format of shape (B, N, F), where
B is the batch size, N is the maximum number of atoms in any molecule within the
batch, and F' is the number of features per atom. Molecules with fewer atoms than
N were padded accordingly, and a binary mask of shape (B, N) was used to track
valid (non-padding) atoms. This batching transformation was applied consistently to
both the node feature tensor and the 3D positional coordinates (B, N, 3), as well as
the adjacency representation, which was converted into dense edge matrices of shape
(B, N, N). (Note: we arbitrarily chose 10 atomic features to act as node features
for each atom. These features are atomic number, ring membership, aromaticity flag,
atom degree, atomic mass, explicit hydrogens count, implicit hydrogens count, total
degree, total hydrogen count, and valence electron count. Similar to the chemical
properties, the scope of this study does not demand that the reader understand the

specific meanings of these terms, but only that they are each a valid atomic feature).

3.3 Graph Encoder Experimental Results

We evaluated the performance of the EGNN graph encoder as a unimodal baseline on
the filtered MolTextNet dataset. The model was trained using a batch size of 64 and
optimized with the Adam, or Adaptive Moment Estimator, optimizer (an optimizer
that uses stochastic gradient descent with an adaptive learning rate) using an initial
learning rate of 1- 1073 (widely considered the standard for the Adam Optimizer).
The training procedure used early stopping based on validation loss, with a patience

of 5 iterations. In other words, a relative optimal model was determined during the
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training procedure after 5 iterations passed with no decrease in average error for
model against the validation set. Training halted after 28 iterations, meaning the
relative optimal model finishes training after only 23 iterations. Prior to training,
all target values were standardized by subtracting the respective mean from each
target and dividing the result by the respective standard deviation. This caused each
target variable to have a mean of 0 and a standard deviation of 1. (Standardizing is
a common machine learning practice to help stabilize training and prevent variables
with inherently larger magnitudes from dominating the tuning of the neural network’s
parameters.) To assess the predictive accuracy of the model, a separate held-out test
set was used to prevent any possible adaptation of the model directly to the test
set, keeping the set as an adequate general representation of non-training and non-
validation data. Reiterating which regression metrics are used, the three metrics are:
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the coefficient
of determination (R?). (All training was conducted in Google Colab using an A100
GPU instance.)

Figure 3.1 illustrates the progression of training and validation loss over the 23
training epochs. Table 3.1 summarizes the model’s predictive performance across
all five molecular property targets. Finally, figure 3.2 shows scatter plots comparing
predicted and ground-truth values for four of the five regression targets. The fifth
plot was omitted for layout clarity but followed similar predictive trends.

The model achieved high accuracy on most targets, with R? scores exceeding
0.95 for Molecular Weight, Log P, Polar Surface Area, and Synthetic Accessibility
Score (SAS). The Synthetic Complexity Score (SCS) target showed comparatively
lower predictive performance (R? = 0.880), likely reflecting greater variability or
complexity in its underlying signal. Overall, the average MAE across all targets was

0.158, the average RMSE was 0.206, and the average R? score was 0.954. Keep in
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Training History Chart

MSE Loss

e

=

w
L

0.10

0.05

0.00

—=—=- Training Loss
Validation Loss

Epochs

25

Figure 3.1 Training and validation loss plotted over the course of 23 training
epochs. The plot reflects the model’s learning behavior during optimization,
with early stopping triggered after validation loss ceased improving. Loss
values are computed using Mean Squared Error on standardized target values.

mind that all target values were standardized, so all targets share comparable scales.

(Note: R? scores range from —oo to 1, with a higher value indicating better

alignment of the model with variance in the dataset. An R? score of R? >~ 0.9 is

generally viewed as indicating a strong fit of the model.)

Property RMSE MAE R?

Molecular Weight 0.134  0.103  0.982
Log P 0.172  0.126  0.969
Polar Surface Area  0.143  0.114  0.981
SCS 0.338  0.266  0.880
SAS 0.243  0.182 0.955
Average 0.206 0.158 0.954

Table 3.1 Standardized EGNN test set results across five molecular property

targets.
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Figure 3.2 Scatter plots comparing predicted versus ground-truth values
for four of the five molecular property targets in the test set. Each point
represents a single molecule, plotted using standardized target values. A
diagonal line would (y = z) indicate a perfectly accurate model and a straight
horizontal line (y = constant) would indicate a very poor model.
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Chapter 4

Discussion

Ultimately, the goal of this study is to evaluate whether a multimodal model com-
bining interpretations based on molecular graphs and human language descriptions
can outperform the component unimodal models in molecular property prediction.
Developing a working, effective EGNN-based graph interpreting Al is the first step
toward that goal. Our EGNN model achieved high predictive accuracy, notably, with
average R? exceeding 0.95 on four out of five target properties. These results con-
firm that a spatially-aware (ie. atomic positions) graph model can capture significant
structure—property relationships pertaining to molecules and, thus, provide a robust
baseline for subsequent comparisons of the full architecture.

An explanation for the relatively lower performance on the SCS target is not yet
known, but may include a reflection of greater variability in how this property is
expressed structurally, and/or limitations in how it was extracted from the dataset.
Additionally, the use of standardized target values improves numerical stability but
complicates interpretation in physical units. These limitations, along with the ex-
clusion of text-based and fusion model results at this stage, frame this study in its

current form as an in-progress contribution toward the development and evaluation

21
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of a multimodal framework.

Future evaluations will assess the performance of the text interpreter and the full
architecture. It is anticipated that the text descriptions may encode complementary
semantic (language-based) signals that are not explicitly captured in the graph struc-
ture. If so, it is expected that the multimodal framework will demonstrate improved
generalization and performance across difficult-to-predict properties. While the full
hypothesis has yet to be tested, the current findings establish a solid foundation and
justify further development of multimodal approaches in molecular representation

learning.



Chapter 5

Conclusion

In this study, we proposed a multimodal deep learning software framework for chem-
ical property prediction that integrates graphical and textual data modalities. This
framework includes a unified architecture composed of an E(n)-Equivariant Graph
Neural Network (EGNN) for molecular graph encoding, a customized Large Language
Model for processing human language descriptions, and a final Multilayer Perceptron
(MLP) for prediction.

As a first step, we curated and preprocessed a large subset of the MolTextNet
dataset into a PyTorch Geometric-compatible format and implemented the EGNN-
based graph interpreter. Our experimental results on this model demonstrate strong
predictive performance across five regression targets, with high R? scores and low error
metrics, confirming the EGNN’s capability to model molecular structure effectively.

Future work will involve completing the implementations of the text interpreter
and the unifying MLP, followed by a thorough comparison of unimodal versus multi-
modal performance to assess the added value of combining diverse molecular repre-

sentations.
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