
Cadence ® Virtual Component Co-Design
Architecture Services Tutorial

Product Version 2.1
March 2001

 2001 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this
document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission statement,
this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or
distributed in any way, without prior written permission from Cadence. This statement grants you permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s customer
in accordance with, a written agreement between Cadence and its customer. Except as may be explicitly set
forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties
as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does
not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any
liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

VCC Architecture Services Tutorial

Contents
1
Architecture Services Tutorial . 5

Start the VCC Software . 6
Create a Behavior Diagram . 7

Instantiate the Behavior Blocks . 7
Save the Behavior Diagram . 13
Specify Parameter Values . 15
Wire the Blocks . 16
Generate a Netlist . 17

Create an Architecture Diagram . 18
Instantiate the Architecture Blocks . 18
Specify Bus Properties . 20
Wire the Architecture Blocks . 22
Bind the Views . 27
Service Declarations . 28
Architecture Services . 30
Specify Parameter Values . 33
Generate a Netlist . 38

Create a Mapping Diagram . 39
Instantiate Behavior and Architecture Blocks . 40
Add Mapping Connections . 41
Add Performance Views . 43
Specify a Memory Segment Parameter . 46
Add a Mapping Pattern . 48
Generate a Netlist . 50

Run a Simulation . 51
Supplemental Exercise:
Add Memory Reference Calls to a Blackbox Model . 54

Specify the Performance Model . 58
Embed Delays . 60
March 2001 3 Product Version 2.1

VCC Architecture Services Tutorial
Supplemental Exercise:
Create a Custom Architecture Model . 64

Create a New Block . 64
Add Service Declarations . 66
Bind the View . 67

Glossary . 69
March 2001 4 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
1
Architecture Services Tutorial

Architecture services are C++ models for analyzing the performance of architecture
resources and communication patterns.

In this tutorial, you will perform the following exercises:

■ Create a Behavior Diagram

■ Create an Architecture Diagram

■ Create a Mapping Diagram

■ Run a Simulation

In addition, you can perform the following supplemental exercises:

■ Add Memory Reference Calls to a Blackbox Model

■ Create a Custom Architecture Model

Important

To provide optimum screen space for the Cadence® Virtual Component Co-Design
(VCC) tool, you should use the tutorial in printed form. Print the PDF version of this
tutorial before you begin the exercises.
March 2001 5 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Start the VCC Software

1. To start the VCC Create software, choose Start > Programs > Cierto VCC > Create.

2. If VCC Create opens with all the toolbars expanded, use the View > Toolbars menu
command to close them:

❑ Choose View > Toolbars > <Toolbar name>.

❑ One at a time, choose each of the toolbars with a check in front of it.

Closing the toolbars gives you more screen space for your designs.
March 2001 6 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Create a Behavior Diagram

A behavior model defines the functionality used in a simulation. The behavior diagram you
will create contains instances of behavior primitives, parameters assigned to those primitives,
and wires connecting the primitive models.

Instantiate the Behavior Blocks

1. Choose File > New.

2. Double-click the Behavior icon.

A new empty design titled Behavior1 opens.

Note: To toggle the grid on and off, choose View > Grid.
March 2001 7 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
On the left side of the Create window is the expanded Project Folder that contains all the
libraries you can use (these are defined in your cds.lib file).

.

.

.

March 2001 8 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
3. In the Project Folder, expand the add_mult_testbench library, then expand the
int_source cell.

4. Instantiate three copies of the int_source symbol view in your design.

To instantiate a copy, click on the symbol view, drag the symbol to your design, and drop
the symbol.

5. When you finish instantiating these blocks, click the minus sign to collapse the expanded
int_source cell.

Leave the add_mult_testbench library expanded.

Note: If you don’t collapse each cell after you use it, your Project Folder will grow
increasingly long, making it hard to locate each subsequent cell in this tutorial.
March 2001 9 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
6. In the Project Folder, expand the int_sink cell.

7. Instantiate a copy of the int_sink symbol view in your design.

8. When you finish instantiating this block, click the minus signs to collapse the expanded
int_sink cell and the add_mult_testbench library.
March 2001 10 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
9. In the Project Folder, expand the add_mult library, then expand the adder cell.

10. Instantiate a copy of the adder symbol view in your design.

11. When you finish instantiating this block, click the minus signs to collapse the expanded
adder cell.

Leave the add_mult library expanded.
March 2001 11 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
12. In the Project Folder, expand the multiplier cell in the add_mult library.

13. Instantiate a copy of the multiplier symbol view in your design.

14. When you finish instantiating this block, click the minus signs to collapse the expanded
multiplier cell and the add_mult library.
March 2001 12 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Save the Behavior Diagram

When you save a diagram for the first time, you must specify a library.cell:view for the
design.

1. To save the behavior diagram, choose File > Save.

VCC prompts you to choose a library.

2. To create a new tutorial library, enter the name Tutorial in the Library field, then click
Open.

VCC prompts you to create the new Tutorial library.

3. Click OK in the dialog.

VCC creates the new Tutorial library and prompts you for a cell name.
March 2001 13 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
4. Enter the name behav_system and click Save.

The view name defaults to behav.

VCC adds your new library and cell to the library list.

Note: If you were unable to complete the steps to instantiate the blocks:

❑ Close your Tutorial.behav_system:behav cellview

❑ Open Tutorial_Examples.Example1:behav

❑ Save the example as Tutorial.behav_system:behav
March 2001 14 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Specify Parameter Values

The inputs for this behavior model come from the three integer source blocks. You will assign
each of them an integer value of 1, 2, and 3, respectively.

1. Right click on the first Integer Source symbol and choose Properties from the pop-up
menu.

The Properties dialog opens.

2. Click the Parameters tab on the Properties dialog.

3. Double-click in the Value field, then replace the zero with the integer 1.

4. Click OK in the Properties dialog.

5. Repeat steps 1 through 4 for the other two integer source blocks, setting the value to 2
for the second block and 3 for the third block.

Note: If you were unable to complete the steps to set the parameter values:

❑ Close the Tutorial.behav_system:behav cellview

❑ Open Tutorial_Examples.Example2:behav

❑ Save the example as Tutorial.behav_system:behav

0

March 2001 15 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Wire the Blocks

Connection wires connect outputs to inputs in the behavior diagram. You will wire the blocks
in the behavior diagram in the following way:

❑ The outputs of the first two Integer Sources are inputs for the Adder.
(Add 1 + 2 to get 3.)

❑ The output of the Adder and the output of the third Integer Source are inputs for
the Multiplier. (Multiply 3 x 3 to get 9.)

❑ The output of the Multiplier is the input for the Integer Sink. (Discard the 9.)

1. Rearrange the blocks in this general order:

2. To add a wire, choose Behavior > Wire.

3. Click at the starting point for the wire (an output), then click at the ending point (an input)
to terminate the wire.

VCC automatically inserts bends in the wire; you need to enter only the beginning and
ending points.

Note: After you have wired a block, you can move the block and the wires move with it.

4. Wire each of the blocks as shown in this diagram.
March 2001 16 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Generate a Netlist

The Generate Netlist function verifies the syntax of your code and reports any errors.

1. To generate and verify the code for this diagram, choose Tools > Generate Netlist.

VCC reports the success of the code generation in the text field at the bottom of the VCC
Create window:

If the code generation was unsuccessful, the messages should help you understand
what went wrong. For example, the message might tell you that your design has a
parameter with no value.

Error: Parameter ‘Value’ has no value.
{in /(Tutorial.behav_system:behav)I_O}:

2. If VCC reports any errors, correct them and regenerate the netlist until all errors are gone
before proceeding with the exercises in this tutorial.

Note: If you are unable to successfully generate the netlist:

❑ Close your Tutorial.behav_system:behav cellview

❑ Open Tutorial_Examples.Example3:behav

❑ Save the example as Tutorial.behav_system:behav

3. To save the behavior model, choose File > Save.

4. To close the behavior model, choose File > Close.
March 2001 17 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Create an Architecture Diagram

An architecture model defines the resources used in a simulation. The architecture diagram
you will create contains instances of architecture primitives, parameters assigned to those
primitives, and buses connecting the primitive models.

Instantiate the Architecture Blocks

1. Choose File > New.

2. Double-click the Architecture icon.

A new empty design titled Architecture1 opens.

Note: To toggle the grid on and off, choose View > Grid.
March 2001 18 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
3. In the Project Folder, expand the VCC_RTOS library, then expand the
MultipleServiceRTOS cell.

4. Instantiate the symbol view in your design.

5. Repeat steps 3 and 4 for the following lib.cell:views:

❑ VCC_CPU.SimpleCPU:symbol

❑ VCC_ASIC.SimpleASIC:symbol

❑ VCC_Memory.SnoopyCache:symbol

❑ VCC_Memory.SimpleMemory:symbol

6. To add a bus to the diagram:

❑ Choose Architecture > Bus.

❑ Click in your diagram to indicate the starting point of the bus, move your cursor, then
double-click to terminate the bus.

The length of the bus doesn’t matter; you’ll modify it later.

7. Repeat step 6 until you have three buses in your diagram.

Your diagram should contain these instances:
March 2001 19 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Specify Bus Properties

1. To specify properties for each of the buses, right click on the bus and choose Properties
from the pop-up menu.

The Properties dialog prompts you for the Library Name and Cell Name of the bus.

You will specify two of these buses as FCFSBus and one as an InterruptBus.

2. Click Browse and open the VCC_Bus library in the browser.

3. Click the FCFSBus cell name, then click Open.

The Properties dialog displays the library and cell names.
March 2001 20 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
4. Click Visible next to the Cell Name field.

This displays the FCFSBus cell name on the bus graphic in the diagram.

5. Click the Resource Type down arrow and choose Data Bus.

6. Click OK in the Properties dialog.

7. Repeat steps 1 through 6 for the second bus and configure it as an FCFSBus cell.

8. Repeat steps 1 through 6 for the third bus and configure it as an InterruptBus cell,
specifying the Resource Type as Bus.

Now you are ready to wire the blocks and buses in your architecture diagram.

9. To save this diagram, choose File > Save and specify the library.cell:view as
Tutorial.arch_system:arch.

Note: If you were unable to instantiate these architecture blocks and specify the bus
properties:

❑ Close your Tutorial.arch_system:arch cellview

❑ Open Tutorial_Examples.Example4:arch

❑ Save the example as Tutorial.arch_system:arch
March 2001 21 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Wire the Architecture Blocks

Architecture communication wires can connect blocks to blocks or blocks to buses.

When you complete the wiring steps in this section, your diagram should look like this:
March 2001 22 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Organize the Blocks

1. Arrange your blocks similar to this diagram:

Notice that the SnoopyCache block is flipped to make wiring easier.

2. To flip the SnoopyCache block:

❑ Click the block to select it.

Make sure you’ve selected the block and not a port. Bright green markers appear in
all four corners of a block when it is selected.

❑ Choose Layout > Flip Vertically.

3. To stretch the buses, click on the end of the bus symbol and drag your cursor.
March 2001 23 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Wire the Blocks

1. To connect the RTOS to the CPU:

❑ Choose Architecture > Scheduler Assignment.

❑ Click the output port of the RTOS, then click on the input port of the CPU.

The connection looks like this:

This connection is not an ordinary communication wire; it is a scheduler assignment. A
scheduler represents a scheduling policy for an architecture resource that governs how
the behavior models assigned to the resource gain access to and share the resource.

2. To connect the CPU to the FCFS and Interrupt buses:

❑ Choose Architecture > Communication Wire.

❑ Click the bottom output port of the CPU, then click on the edge of the FCFS bus
below.

❑ Repeat this process, connecting the right output port to the Interrupt bus.

The connections look like this:

FCFS Bus

Interrupt Bus
March 2001 24 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
3. To connect the ASIC to the FCFS and Interrupt buses:

❑ Choose Architecture > Communication Wire.

❑ Click the bottom output port of the ASIC, then click on the edge of the FCFS bus.

❑ Repeat this process, connecting the left output port to the Interrupt bus.

The connections look like this:

4. To connect the SnoopyCache to the FCFS bus:

❑ Choose Architecture > Communication Wire.

❑ Click either of the top output ports of the SnoopyCache, then click on the edge of
the FCFS bus above the block.

❑ Repeat this process, connecting the other top output port to the same FCFS bus.

❑ Repeat this process, connecting the bottom output port to the FCFS bus below the
block.

The connections look like this:

Interrupt Bus

FCFS Bus

FCFS Bus

FCFS Bus
March 2001 25 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
5. To connect the SimpleMemory to the FCFS bus:

❑ Choose Architecture > Communication Wire.

❑ Click the output port of the SimpleMemory, then click on the edge of the FCFS bus
below the block.

The connection looks like this:

Your completed diagram with all the blocks and buses connected looks like this:

6. To save theTutorial.arch_system:arch diagram, choose File > Save.

Note: If you were unable to wire these architecture blocks:

❑ Close your Tutorial.arch_system:arch cellview

❑ Open Tutorial_Examples.Example5:arch

❑ Save the example as Tutorial.arch_system:arch
March 2001 26 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Bind the Views

Performance analysis in the VCC environment requires a performance view for each
architecture primitive. The performance view describes how the behavior that runs on the
model affects the performance of the design.

An architecture model can have more than one performance model. When you bind a
performance view to an architecture model, you tell VCC which performance model to
implement when it performs a simulation.

Each of the architecture blocks in the diagram is bound to a specific view:

1. To open the Bind View dialog, right click on a block and choose Bind View from the pop-
up menu.

The Bind View dialog lets you choose from a list of appropriate views. The choices are
different for each type of architecture block.

2. To bind a view, click the down arrow, choose the appropriate view, then click OK.

Note: If the correct view is already specified, you can click Cancel in the Bind View dialog.

MultipleServiceRTOS fifo_sched

SimpleCPU processor

SimpleASIC asic

SnoopyCache cache

SimpleMemory memory

FCFSBus bus

InterruptBus bus
March 2001 27 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Service Declarations

Each architecture component has an associated service declaration. A service declaration
represents how the resource communicates with other architecture resources and
communication services. Each service declaration is specified with a Name, Type, and Value.

The service declarations for the components used in this diagram are already specified, so
you don’t need to specify them.

1. To view the service declarations, right click the block and choose Properties from the
pop-up menu.

2. Click the Service Declaration tab.

■ Service declarations for MultipleServiceRTOS

■ Service declarations for SimpleCPU
March 2001 28 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
■ Service declarations for SimpleASIC

■ Service declarations for SnoopyCache

■ Service declarations for SimpleMemory

■ Service declarations for InterruptBus

■ Service declarations for FCFSBus (both buses)
March 2001 29 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Architecture Services

Each architecture component view has an associated service binding. Each service binding
is specified with a Name, Type, and Value. The Name is the same name you saw in the
“Service Declarations” section.

The service bindings for the components used in this diagram are already specified, so you
don’t need to edit them.

1. To view the service bindings, right click the block and choose Edit View from the pop-
up menu.

2. In the Edit View dialog, select the view whose service bindings you want to view and click
OK.

The service bindings shown here are for the views you specified in the “Bind the Views”
section.

3. Click the Service Binding tab.

■ Architecture service bindings for MultipleServiceRTOS
March 2001 30 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
■ Architecture service bindings for SimpleCPU

■ Architecture service bindings for SimpleASIC
March 2001 31 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
■ Architecture service bindings for SnoopyCache

■ Architecture service bindings for SimpleMemory

■ Architecture service bindings for FCFSBus (both buses)

■ Architecture service bindings for InterruptBus
March 2001 32 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Specify Parameter Values

There are many parameters associated with an architecture block. In this section, you will set
the parameter values for your blocks to the values shown in the following examples.

1. To display the parameters, right click the block and choose Properties from the pop-up
menu.

2. Click the Performance tab in the Properties dialog.

3. To expand the parameters, click the plus sign before the parameter group headers.

4. To edit parameter values, double-click in the Value field.

❑ If the value is a number, type the new number.

❑ If the value is a library.cell:view, use the browse button (...) to locate the lib.cell:view.

❑ If the value is Boolean, you can type True or False or choose from the down arrow.

❑ Some parameter values look like this:

@VCC_Types.SchedulerOverheadType{0.0,0.0,0.0,0.0}

These values represent the heading for a group of values. When you enter the
individual values under that heading, the values are appended together and
displayed with the group heading. You do not need to enter the values for the group
heading.

5. To save the parameter values and close the Properties dialog, click OK.

6. Set the parameter values for each block as shown in the following examples.

■ Parameters for SimpleMemory
March 2001 33 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
■ Parameters for MultipleServiceRTOS

Double-click the value field, click the
down arrow, then select Suspend.

Click the plus signs to expand these headings.
Do not enter values for these parameter
headings.
March 2001 34 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
■ Parameters for SimpleCPU

Double-click the value field, click the
down arrow, then select BusTraffic.

This is an empty string. Type an
opening and closing quotation mark.

Click the plus sign to expand
this heading. Do not enter values
for this parameter heading.
March 2001 35 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
■ Parameters for SimpleASIC

Double-click the value field, click the
down arrow, then select Suspend.

Click the plus signs to expand
these headings. Do not enter values
for these parameter headings.
March 2001 36 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
■ Parameters for SnoopyCache

■ Parameters for FCFSBus (both FCFS buses)

■ There are no parameters for the InterruptBus.

7. To save theTutorial.arch_system:arch diagram, choose File > Save.

Note: If you were unable to specify the parameters for these architecture blocks:

❑ Close your Tutorial.arch_system:arch cellview

❑ Open Tutorial_Examples.Example6:arch

❑ Save the example as Tutorial.arch_system:arch

Double-click the value field, click the
down arrow, then select the value.
March 2001 37 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Generate a Netlist

The Generate Netlist function verifies the syntax of your code and reports any errors.

1. To generate and verify the code for this architecture diagram, choose Tools > Generate
Netlist.

The text field at the bottom of the VCC window reports that the code generation was
successful or it reports the cause of any errors.

2. Ignore the following messages that the Child port on the RTOS is unconnected.

Warning: The port ‘Child’ is not connected.
{in /(Tutorial.arch_system:arch)I_0.Child}:

Warning: Some ports in the instance ‘MultipleServiceRTOS(I_0)’
are not connected. {in /(Tutorial.arch_system:arch)I_0}.

❑ Warnings do not cause the code generation to fail.

❑ Errors cause the code generation to fail.

■ Successful code generation message:

Info: Code generation for Tutorial.arch_system:arch was successful.

■ Unsuccessful code generation message (caused by a missing parameter value):

Error: The parameter “<parameter name>” has no value.
{in /(Tutorial.arch_system:arch)I_0}.

This error message is only a sample. You might see other types of messages, but the
information in the message should help you correct your design.

Note: If you don’t know which block is causing the problem (in this example error
message, it’s I_0), right click on a block and choose Properties. The Block tab contains
information about the Instance Name.

3. Correct any errors and run Tools > Generate Netlist until the code generation is
successful.

Note: If you are unable to generate the code for the architecture model:

❑ Close your Tutorial.arch_system:arch cellview

❑ Open Tutorial_Examples.Example6:arch

❑ Save the example as Tutorial.arch_system:arch

4. To save the architecture model, choose File > Save.

5. To close the architecture model, choose File > Close.
March 2001 38 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Create a Mapping Diagram

A mapping diagram lets you map your behavior diagram to your architecture diagram,
simulate the performance, and analyze the results.

1. Choose File > New.

2. Choose Mapping and click OK.

A new empty design titled Mapping1 opens.

Note: To toggle the grid on and off, choose View > Grid.
March 2001 39 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Instantiate Behavior and Architecture Blocks

1. In the Project Folder, expand the Tutorial library, then expand the behav_system cell.

2. Click the behav symbol view and drag it to the mapping diagram.

3. In the Project Folder, expand the Tutorial.arch_system cell.

4. Click the arch symbol view and drag it to the mapping diagram.

Your mapping diagram now looks like this:
March 2001 40 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Add Mapping Connections

1. Choose Mapping > Mapping Connection.

2. To draw a mapping connection from the Adder to the RTOS, click on the Adder in the
behavior diagram, then click on the RTOS in the architecture diagram.

Your diagram now looks like this:
March 2001 41 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
3. Choose Mapping > Mapping Connection.

4. To draw a mapping connection from the Multiplier to the ASIC, click on the Multiplier
in the behavior diagram, then click on the ASIC in the architecture diagram.

Your diagram now looks like this:
March 2001 42 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Add Performance Views

Important

Under no circumstances can you make a copy of Example7 and skip steps 1-6. You
can avoid all other steps in the “Creating a Mapping Diagram” section by using the
examples in the Tutorial_Examples library, but you MUST perform steps 1-6
yourself.

You will now add a new DSL (delay scripting language) performance view to the Adder
behavior block and a delay performance view to the connection between the Adder and the
RTOS.

1. To add a new performance view to the Adder, right click on the Adder symbol, and
choose New View from the pop-up menu.

2. In the Performance Models section, choose Delay Script, then click OK.

A dialog ask if you want to update the interface of the adder.

3. Click Yes in the dialog.

Select Delay Script
March 2001 43 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
The delay scripting language file (perf.dsl) for the performance model opens:

4. Add the delay expression delay(‘10.0’), so the script looks like this:

5. To save the perf.dsl file, make sure the perf.dsl file is the active file, and choose File >
Save.

6. To close the perf.dsl file, choose File > Close.

7. To set the performance view for the mapping connections, select the connection wire
between the Adder and the RTOS.

Make sure you see the green markers at each end of the wire.

Add this delay expression
March 2001 44 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
8. Right click and choose Properties from the pop-up menu.

9. Click the browse button (...) next to the Performance View field.

10. Click the down arrow for Performance View and choose delay.

11. Click OK in the Bind View dialog, then click OK in the Properties dialog.
March 2001 45 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Specify a Memory Segment Parameter

The SimpleCPU requires a Memory Segment parameter. The value for this parameter is the
instance name of the SimpleMemory block.

1. To find the instance name of the SimpleMemory block, right click on the block and
choose Properties.

Note: Look for the green box around the SimpleMemory block to make sure you’ve
selected the block and not a port or the entire model.

The Block tab contains information about the Instance Name. For this example, the
instance name is I_3.

2. Make a note of the instance name of the SimpleMemory block.

You will use this instance name for the mem parameter in step 6.

3. To close the Properties form, click Cancel.

4. To specify a Memory Segment parameter for the SimpleCPU, right click on the
SimpleCPU architecture block, and select Properties from the pop-up menu.

Note: Look for the green box around the SimpleCPU block to make sure you’ve
selected the block and not a port or the entire model.

5. Click the Memory Segment tab, and expand the stack parameter heading.

6. Enter the instance name of the SimpleMemory block as the value for the mem
parameter.

You must include the opening and closing quotation marks in the value. For example
“I_3”.

Click the plus sign to expand
this parameter heading.

Enter the value “I_3”, including the
opening and closing quotation mark.
March 2001 46 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
March 2001 47 Product Version 2.1

7. To save the parameter values and close the Properties dialog, click OK.

8. To save the Mapping diagram, choose File > Save.

9. Double-click the Tutorial library icon in the browser.

10. Specify the file name as mapping_config, and click Save.

11. When you are asked if you want to save the configuration for this design, click Yes.

Save the configuration as Tutorial.mapping_config:config.

Note: If you are unable to complete the mapping diagram:

❑ Close your Tutorial.mapping_config:mapping cellview

❑ Open Tutorial_Examples.Example7:mapping

❑ Save the example as Tutorial.mapping_config:mapping

VCC Architecture Services Tutorial
Architecture Services Tutorial
Add a Mapping Pattern

To refine your simulation, you can map a communication wire to a communication pattern that
models specific protocols between the sender and receiver. To transfer a small data token,
you can use the RegisterMappedSwHw pattern in which the data is transferred directly to
a register on the ASIC.

1. To instantiate the RegisterMappedSwHw symbol in this mapping diagram, do the
following:

❑ In the Project Folder, expand the VCC_Patterns library, then expand the
RegisterMappedSwHw cell.

❑ Click the RegisterMappedSwHw symbol view and drag it to the behavior model in
the mapping diagram.

2. Place this symbol near the upper input port of the Multiplier.

Your diagram now looks like this:

3. Choose Mapping > Mapping Connection.

4. To draw the mapping connection, click on the upper input port of the Multiplier, then click
on the RegisterMappedSwHw.
March 2001 48 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Your diagram now looks like this:

5. Right click on the RegisterMappedSwHw symbol and choose Bind View from the pop-
up menu.

6. Choose proto and click OK.

The proto view models the refined simulation of the protocol.

7. To save the Mapping diagram, choose File > Save.

Note: If you are unable to add the mapping pattern:

❑ Close your Tutorial.mapping_config:mapping cellview

❑ Open Tutorial_Examples.Example8:mapping

❑ Save the example as Tutorial.mapping_config:mapping
March 2001 49 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Generate a Netlist

1. To generate a netlist for the mapping diagram, choose Tools > Generate Netlist.

■ Ignore the following messages that the Child port on the RTOS is unconnected.

Warning: The port ‘Child’ is not connected.
{in /(Tutorial.arch_system:arch)I_0.Child}:

Warning: Some ports in the instance ‘MultipleServiceRTOS(I_0)’
are not connected. {in /(Tutorial.arch_system:arch)I_0}.

❑ Warnings do not cause the netlist generation to fail.

❑ Errors cause the netlist generation to fail.

■ Successful netlist generation message:

Info: Code generation for Tutorial.behav_system:behav was successful.
Info: Code generation for Tutorial.arch_system:arch was successful.
Info: Code generation for Tutorial.mapping_config:mapping was successful.

■ Unsuccessful netlist generation message (caused by a missing parameter value):

Error: The parameter “<parameter name>” has no value.
{in /(Tutorial.arch_system:arch)I_0}.

This error message is only a sample. You might see other types of messages, but the
information in the message should help you correct your design.

Note: If you don’t know which block is causing the problem (in this example error
message, it’s I_0), right click on a block and choose Properties. The Block tab contains
information about the Instance Name.

2. Correct any errors and run Tools > Generate Netlist until the code generation is
successful.

Note: If you are unable to successfully generate your code:

❑ Close your Tutorial.mapping_config:mapping cellview

❑ Open Tutorial_Examples.Example8:mapping

❑ Save the example as Tutorial.mapping_config:mapping

3. To save the mapping diagram, choose File > Save.
March 2001 50 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Run a Simulation

Your completed mapping diagram now looks like this:

1. Choose File > New, then click the Analysis tab.

2. Double-click the Analysis icon.
March 2001 51 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
The New Analysis Session dialog opens.

3. Accept the default names for the simulation session and results file name, and click OK.

Notice that the Analysis menu is added to the main menu bar.

4. Choose Analysis > Initialize.

A dialog prompts you to enter an end time for the simulation.

5. Set the value for End Time to 1000, then click OK.

1000 is a safe value because the memory-related transactions of the simulation will
complete within this time.

An Analysis Cockpit dialog asks if you want to save the session changes.

6. Click Yes in the Analysis Cockpit dialog.

As VCC initializes the simulation, it reports the progress in the text window at the bottom
of the screen.

7. When the text window reports Info:Done, choose Analysis > Go/Continue.

VCC reports the progress in the text window at the bottom of the screen.

8. To view the output of the analysis, open the following directory:

C:\MyWorkspace\Tutorial\mapping_config\results

This directory contains several error, debugging, and information files.
March 2001 52 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Note: If you are unable to successfully generate your code:

❑ Close your Tutorial.mapping_config:mapping cellview

❑ Open Tutorial_Examples.Example8:mapping

❑ Save the example as Tutorial.mapping_config:mapping

❑ Rerun the simulation.
March 2001 53 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Supplemental Exercise:
Add Memory Reference Calls to a Blackbox Model

To call a memory service, you must supply a reference to a memory service declaration. This
exercise annotates memory references in the blackbox model which in turn generate memory
references in the architectural memory hierarchy.

1. In the Behavior diagram you created in the previous exercise, right click the Adder and
choose Edit View from the pop-up menu.

The Edit View dialog opens.

2. Choose blk_cpp and click OK.

The blk_cpp template text window opens.

Choose blk_cpp
March 2001 54 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
3. Right click in the text window and choose Properties from the pop-up menu.

The Properties dialog opens. The dialog defaults to the Parameters tab.

4. Click the Uses tab.

The Uses tab displays only the field titles. There are no defined properties.

5. Right click in the blank area in the dialog box, then choose New Property from the pop-
up menu.

The plus sign in the Handle Name field indicates that you can enter the name of the
property.

6. Type meminterface in the Handle Name field, then tab to the Service Declaration field.
March 2001 55 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
7. Click the browser button (...).

The browser opens to your Project Folder.

8. Double-click the VCC_ServiceDeclarations library icon.

9. Double-click the MemoryAccessDeclaration cell icon.

The view name defaults to blk_serviceDecl.

The browser displays the cell and view names you have selected.

Selected Cell name.

Default View name.
March 2001 56 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
10. Click Open.

11. In the Properties dialog, double-click in the Object Type field and enter the object name
Object.

When you finish, your Properties dialog should look like this:

12. Click OK in the Properties dialog.

13. To close the blk_cpp template text window, click the X in the upper right corner.

14. To save the mapping diagram, choose File > Save.

Note: If you are unable to add the service declaration:

❑ Close your Tutorial.mapping_config:mapping cellview

❑ Open Tutorial_Examples.Example9:mapping

❑ Save the example as Tutorial.mapping_config:mapping
March 2001 57 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Specify the Performance Model

1. In the Behavior diagram, right click the Adder and choose New View from the pop-up
menu.

The New View dialog opens.

2. Under Performance Models, choose Annotated CPP, then click OK.

A dialog asks if you want to update the interface of the cell add_mult.adder.

3. Click Yes in the dialog.

The Properties dialog opens so you can specify properties for the view you just created.

Select Annotated CPP
March 2001 58 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
4. Click the plus sign in front of the Memory Segments name.

5. Replace the “0” in the Value fields with the following values:

Note: You must enclose the values with quotations.

6. When you finish entering all the values, click OK.

data "1024"

code "2048"

bss "2048"
March 2001 59 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Embed Delays

If the add_mult.adder:blk_cpp black.cpp text window is still open, skip to step 3.

1. In the Behavior diagram, right click the Adder and choose Edit View from the pop-up
menu.

The Edit View dialog opens.

2. Choose blk_cpp and click OK.

The blk_cpp template text window opens.

Choose blk_cpp
March 2001 60 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
You are going to edit the code of the Init function.

3. Add the following lines to the Init function code:

VCC automatically changes keywords to red and blue text.

You are now going to embed a delay in the Run function.

Init function

Add these four lines of code.

Run function
March 2001 61 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
4. Add the following lines of code to the Run function code:

These three lines of code introduce the following delays:

❑ A delay equivalent of memory read for 320 bytes into the text segment.

❑ A delay equivalent of memory write for 480 bytes into the text segment.

❑ A delay equivalent of memory write for 640 bytes into the bss segment.

5. To save the changes, make sure the add_mult.adder:blk_cpp black.cpp text window
is the active window, and choose File > Save.

6. To open the black.h file, right click in the add_mult.adder:blk_cpp black.cpp text
window and choose Edit black.h.

Add these three lines of code.
March 2001 62 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
7. Add the following lines of code to the black.h file:

8. To save the changes, make sure the add_mult.adder:blk_cpp black.h text window is
the active window, and choose File > Save.

9. To close the text window, click the X in the upper-right corner.

10. To save the Tutorial.mapping_config:mapping, choose File > Save.

11. To analyze the effect of the delays, follow the steps in “Run a Simulation” and run the
simulation.

Note: If you are unable to perform a successful simulation:

❑ Close your Tutorial.mapping_config:mapping cellview

❑ Open Tutorial_Examples.Example10:mapping

❑ Save the example as Tutorial.mapping_config:mapping

❑ Rerun the simulation and analyze the effects of the delays.

Add these four lines of code.
March 2001 63 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Supplemental Exercise:
Create a Custom Architecture Model

You can create your own custom architecture model and assign architecture services to it.

Create a New Block

1. Choose File > New.

2. Choose Architecture and click OK.

A new empty design titled Architecture1 opens.

3. Choose Architecture > Storage Resource.
March 2001 64 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
4. Move your cursor into the Architecture diagram and you’ll see a block attached to the
cursor.

5. Click in the diagram to place the block.

6. Right click on the block and choose Properties from the pop-up menu.

The Properties dialog opens with the Block tab displayed.

7. Enter the following values in the Properties dialog:

8. In the Resource Type field, click the down arrow and choose Read Only Memory.

Do not click OK in the Properties dialog. You will continue using this dialog to add service
declarations.

Library Name Tutorial

Cell Name newMemory

Symbol symbol
March 2001 65 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
Add Service Declarations

1. In the Properties dialog, click the Service Declaration tab.

The Properties dialog displays the default service declaration.

2. To add a service declaration, right click in the blank area of the dialog and choose New
Property from the pop-up menu.

A plus sign in the Name field indicates that you can enter a new service declaration
name.

3. Type newMemory in the Name field and tab to the Value field.

You cannot edit the Type field for these properties.

4. Click the browser button (...).

The browser opens to your Project Folder.

5. Double-click the VCC_ServiceDeclarations library icon.

6. Double-click the MemoryAccessDeclaration cell icon.

The view name defaults to blk_serviceDecl.
March 2001 66 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
The browser displays the cell and view names you have selected.

7. Click Open.

Bind the View

1. Right click on the block and choose New View from the pop-up menu.

2. In the View Name field, enter rom and click OK.

The Properties dialog opens.

Selected Cell name.

Default View name.
March 2001 67 Product Version 2.1

VCC Architecture Services Tutorial
Architecture Services Tutorial
3. Click the Service Binding tab.

4. Double-click in the Value field for the memory service so the browse button appears,
then click the browse button.

The browser opens to your Project Folder.

5. Double-click the VCC_ArchitectureServices library icon.

6. Double-click the Memory cell icon.

The view name defaults to blk_service.

The browser displays the cell and view names you have selected.

7. Click Open.

8. Click OK in the Properties dialog.
March 2001 68 Product Version 2.1

VCC Architecture Services Tutorial
Glossary

A

architecture model
Represents a block in an architecture design. Each model represents a specific
implementation of the block in hardware or software and has implementations written in
Verilog, VHDL, layout description, C, assembly code, or similar languages.

architecture primitive
The lowest-level functional component in a design. Standard primitives are available on
the Architecture menu.

B

behavior diagram
A behavior diagram is composed of ports, parameters, instances, and connectivity.

behavior model
A behavior model in the VCC environment defines the system-level functionality used
during simulation.

behavior primitive
The lowest-level behavior component in a design. Standard primitives are available on
the Behavior menu.

bind a view
When you bind a view to an architeclture block, you tell the VCC system which of the
available performance views to implement when you simulate the block. The different
views can offer differences in accuracy and simulation performance.

C

cellview
The lowest level of the file structure library.cell:view. Users create and modify data at
the cellview level. When you instantiate an object, you are placing its cellview.
March 2001 69 Product Version 2.1

VCC Architecture Services Tutorial
Glossary
D

diagram (architecture, behavior)
A graphical collection of objects, such as blocks, primitives, symbols, or connections.

diagram (mapping)
A hierarchical design where behavior and architecture models are mapped and
simulated.

E

error
Text message that informs you of unacceptable situations in your design when you
perform a code generation or simulation. Errors cause the code generation or
simulation to fail.

I

implementation (architecture)
Performance model of an architecture component. Reflects a hardware implementation
of that component.

implementation (behavior)
Clearbox, whitebox, or blackbox description of a model. You can have several
implementations of the same function in a library, each having the same interface, but
with a different implementation.

info
Text message that informs you of the progress of a code generation or simulation.

instance name
As you place a block or primitive in a behavior or architecture diagram, VCC assigns
each object an instance name in the form I_0, I_1, and so forth. VCC refers to
instances by this identifier in parameters and error messages.

instantiate
To place a copy of a primitive component or library.cell:view in a design. In VCC, this is
as simple as choosing a primitive from a menu or clicking on the symbol view in the
project folder, dragging the symbol to your design, and dropping the symbol.
March 2001 70 Product Version 2.1

VCC Architecture Services Tutorial
Glossary
L

library cell
A path name to identify a cell in the Cadence library structure. Usually it has the form
library.cell.

In the NT file structure, the path is specified as C:\MyWorkspace\library\cell.

library cell view
A library element and path name to identify components and files in the Cadence library
structure. It usually has the form library.cell:view.

In the NT file structure, the path is specified as C:\MyWorkspace\library\cell\view

library
A library is a collection of directories. Each directory contains files such as symbols,
interface files, behavior models, or architecture models.

M

model
A functional representation of a device or system that is delivered in object code format.

model instance
A customized version of a model that has been incorporated into a design.

N

NT
Windows NT. The Microsoft operating system used in a networked environment.

P

parameter
A means by which an application or user can customize the behavior or characteristics
of a model instance when it is created. A parameter has a constant value.

pattern
An arrangement of services that collectively model a communication path from sender to
receiver. Patterns support the modeling of communication between software and
hardware, hardware and software, software and software, or hardware and hardware.
March 2001 71 Product Version 2.1

VCC Architecture Services Tutorial
Glossary
performance model
A model that estimates time, power, area, cost, and so forth. In the VCC context, a
performance model usually refers to a delay model.

port
Objects in an application that let the model and the application interact during simulation.
Ports can be Input, Output, or I/O.

port data type
Defines the information or fields required in the port data structure for the model to work.

primitive (C++)
A function or operator built into C++. Primitives typically include the arithmetic and logical
operations (such as plus, minus, and, or) and are implemented by a small number of
machine language instructions.

project folder
A project folder contains the libraries you can use with the VCC software. A project folder
is defined by a cds.lib file, which is a listing of libraries.

S

scheduler
Represents a scheduling policy for an architecture resource that governs how the
behavior models assigned to the resource gain access and share the resource.

service declaration
Service declarations are defined in the VCC_InternalServices library, or users can
define their own declarations. A service declaration’s header file declares a set of
functions that define the service in terms of a C++ abstract base class.

service definition
Service definitions implement service declarations. Service definitions are defined in the
VCC_ArchitectureServices library.

simulation time
A representation of the time your design takes to execute. Simulation time is not the
same as elapsed time to run the simulation.
March 2001 72 Product Version 2.1

VCC Architecture Services Tutorial
Glossary
V

VCC
Virtual Component Co-Design. An integrated environment for development of hardware
and software virtual components.

W

warning
Text message that informs you of unexpected situations in your design when you perform
a code generation or simulation. Warnings do not cause the code generation or
simulation to fail.
March 2001 73 Product Version 2.1

VCC Architecture Services Tutorial
Glossary
March 2001 74 Product Version 2.1

	Contents
	Architecture Services Tutorial
	Start the VCC Software
	Create a Behavior Diagram
	Instantiate the Behavior Blocks
	Save the Behavior Diagram
	Specify Parameter Values
	Wire the Blocks
	Generate a Netlist

	Create an Architecture Diagram
	Instantiate the Architecture Blocks
	Specify Bus Properties
	Wire the Architecture Blocks
	Bind the Views
	Service Declarations
	Architecture Services
	Specify Parameter Values
	Generate a Netlist

	Create a Mapping Diagram
	Instantiate Behavior and Architecture Blocks
	Add Mapping Connections
	Add Performance Views
	Specify a Memory Segment Parameter
	Add a Mapping Pattern
	Generate a Netlist

	Run a Simulation
	Supplemental Exercise: Add Memory Reference Calls to a Blackbox Model
	Specify the Performance Model
	Embed Delays

	Supplemental Exercise: Create a Custom Architecture Model
	Create a New Block
	Add Service Declarations
	Bind the View

	Glossary

