
BUILDING AN EDUCATIONAL COMPUTE CLUSTER

by

Samuel Howarth

A senior thesis submitted to the faculty of

Brigham Young University - Idaho

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Department of Physics

Brigham Young University - Idaho

December 2025

Copyright © 2025 Samuel Howarth

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY - IDAHO

DEPARTMENT APPROVAL

of a senior thesis submitted by

Samuel Howarth

This thesis has been reviewed by the research committee, senior thesis coor-
dinator, and department chair and has been found to be satisfactory.

Date Joe Hill, Advisor

Date David Oliphant, Senior Thesis Coordinator

Date Todd Lines, Committee Member

Date Matt Zachreson, Committee Member

Date Evan Hansen, Chair

ABSTRACT

BUILDING AN EDUCATIONAL COMPUTE CLUSTER

Samuel Howarth

Department of Physics

Bachelor of Science

This thesis examines the historical development of parallel and high-performance

computing, with particular emphasis on the educational and research value of

compute clusters. A Beowulf-style cluster was constructed using Rocky Linux

9.6 to demonstrate practical principles of distributed computation. System

deployment and automation were implemented through GRUB (Grand Uni-

fied Bootloader) menu configurations, PXE (Preboot Execution Environment)

boot services, and Kickstart files, enabling fully unattended installations across

multiple nodes. Configuration of cluster management tools, including SLURM

(Simple Linux Utility for Resource Management), MUNGE (MUNGE Uid ‘N

Gid Emporium), and OpenMPI (Open Message Passing Interface), is doc-

umented in detail. System performance was evaluated using a parallelized

benchmark program that approximates the value of π, demonstrating the

cluster’s computational efficiency, scalability, and reproducibility. The results

viii

highlight the accessibility and pedagogical potential of open-source cluster

computing for high-performance computing education.

ACKNOWLEDGMENTS

This project and thesis would not have been possible without the assistance

and mentorship of Brother Joe Hill, my supervisor and first computational

physics professor.

My heartfelt thanks go out to my own father Evan Howarth and my good

friend Samuel King, who both provided insightful discussions and feedback

in system architecture and project goals. Lastly, I would like to thank my

mother Michelle and sister Ellen for the emotional support during this project

and throughout my university career.

I cannot express enough gratitude to each one of you. Thank you.

Contents

Table of Contents xi

List of Figures xiii

1 Background and History of Parallel and High-Performance Comput-
ing 1
1.1 The Beginning of Digital Computing 2
1.2 Distributed and Cluster Computing 4
1.3 Applications of Cluster Computing in Academics 5

2 Cluster Software Foundations 7
2.1 Linux in High-Performance Computing 8
2.2 Job Scheduling and Resource Management 8
2.3 Parallel Programming with MPI . 9
2.4 Automated Deployment and Network Boot 9
2.5 Secure Communication and Shared Filesystems 10
2.6 Summary . 11

3 The Construction of a New Cluster 13
3.1 Head Node Configuration and Self-Reinstallation 13
3.2 PXE Boot and Network Installation Service 15

3.2.1 PXE Overview . 16
3.2.2 Directory Structure . 16
3.2.3 Configuring dnsmasq . 17
3.2.4 Configuring httpd . 17
3.2.5 GRUB Boot Configuration . 18
3.2.6 Testing and Verification . 18

3.3 Secure Shell (SSH) Configuration . 19
3.4 Network File System (NFS) Setup . 19
3.5 SLURM, MUNGE, and OpenMPI Configuration 20

3.5.1 MUNGE Authentication . 20
3.5.2 SLURM Workload Manager 21
3.5.3 OpenMPI Integration . 22

xi

xii CONTENTS

3.5.4 System Integration Summary 23
3.6 Testing and Validation . 23
3.7 Future Work . 24

4 Benchmarking and Performance Results 25
4.1 Parallelizing the Task . 27
4.2 Performance and Scaling Results . 28
4.3 System Stability and Reproducibility 30

5 Conclusion 33

A Benchmark Program Source Code 35

B SLURM Configuration File 39

C Headnode Kickstart File 41

Bibliography 47

List of Figures

2.1 Cluster architecture showing network topology, storage layout with
NFS mounts, and service roles. 12

4.1 Midpoint-rule approximation of
∫ 1

0

4

1 + x2
dx using subintervals of width

h. 26
4.2 Measured execution time as a function of the number of cores used.

The curve demonstrates strong scaling for small process counts, with
increasing communication overhead at higher core counts. The dashed
line represents an ideal compute time with no delays from communication. 29

4.3 Measured versus ideal speedup. Ideal linear scaling is represented by
the dashed line, while the measured curve shows realistic performance
limited by inter-process communication and synchronization. 30

xiii

Chapter 1

Background and History of Parallel

and High-Performance Computing

Modern high-performance computing systems are the result of decades of archi-

tectural, technological, and conceptual evolution. Understanding how contempo-

rary cluster-based systems emerged requires examining the historical constraints that

shaped early computing, as well as the successive innovations that enabled paral-

lelism at increasing scales. This chapter situates the cluster constructed for this

project within that broader historical context, tracing the development of comput-

ing from early serial machines to vector processors, massively parallel systems, and

ultimately to commodity-based clusters. By reviewing this progression, the chapter

establishes the technical and conceptual foundations necessary for understanding the

design choices and software architecture discussed in later chapters.

Parallel computing allows multiple processing units to work concurrently on parts

of a problem, offering substantial increases in speed and scalability [?]. These ideas

underpin the modern field of high-performance computing (HPC), which today sup-

ports advances in physics, chemistry, climate modeling, and artificial intelligence [?].

1

2 Chapter 1 Background and History of Parallel and High-Performance Computing

This chapter provides a historical overview of how computing evolved from serial

machines to massively parallel systems, culminating in the development of accessible

cluster-based computing for education and research [?].

1.1 The Beginning of Digital Computing

Since the earliest days of electronic computation, scientists and engineers have sought

faster and more capable computing systems [1]. Traditional serial computers execute

one instruction at a time, limiting the rate at which complex calculations can be

performed [1]. As physical limits to processor clock speeds were approached in the

early 2000s, improvements in raw performance slowed dramatically—a trend often

described as the end of Dennard scaling and the slowdown of Moore’s Law [1]. In

response to these limitations, system designers increasingly turned toward architec-

tures capable of performing many operations simultaneously, giving rise to the field

of parallel computing [2].

Parallel computing allows multiple processing units to work concurrently on parts

of a problem, offering substantial increases in performance and scalability [2,3]. These

ideas underpin the modern field of high-performance computing (HPC), which today

supports advances across a wide range of scientific disciplines [4]. This chapter pro-

vides a historical overview of how computing evolved from serial machines to mas-

sively parallel systems, culminating in the development of accessible cluster-based

computing for education and research [5, 6].

The first generation of electronic computers, such as the ENIAC (1945) and UNI-

VAC I (1951), were serial machines capable of executing only one instruction at a

time, reflecting the technological constraints of early electronic hardware [1]. While

revolutionary for their time, these systems were limited by their sequential architec-

1.1 The Beginning of Digital Computing 3

ture and by the physical constraints of early electronic components.

In the 1960s, researchers began exploring methods to increase computational

throughput through simultaneous operations. One of the earliest large-scale attempts

at parallel computing was the ILLIAC IV project, which employed a Single Instruc-

tion, Multiple Data (SIMD) architecture to apply the same operation to many data

elements in parallel [7]. Around the same time, advances in processor architecture

led to the development of vector machines, which achieved performance gains by

operating on entire vectors of data rather than individual scalar values [2].

In 1966, Michael J. Flynn introduced a taxonomy for computer architectures based

on the number of concurrent instruction and data streams: Single Instruction, Sin-

gle Data (SISD), Single Instruction, Multiple Data (SIMD), Multiple Instruction,

Single Data (MISD), and Multiple Instruction, Multiple Data (MIMD) [7]. Flynn’s

taxonomy remains a foundational framework for describing and categorizing parallel

computing systems [1].

By the 1980s and 1990s, high-performance computing was dominated by large,

specialized supercomputers designed for scientific and engineering applications [2].

Vector supercomputers extended earlier architectural concepts with multiple pipelines

and shared-memory parallelism, enabling significant gains in sustained performance.

During this period, researchers also pursued massively parallel processing (MPP)

systems composed of many processors communicating through message passing, an

approach that would later influence cluster-based computing models [2].

These developments laid the conceptual and architectural groundwork for modern

cluster computing, in which commodity hardware and standardized software tools are

used to construct scalable parallel systems [5].

4 Chapter 1 Background and History of Parallel and High-Performance Computing

1.2 Distributed and Cluster Computing

The 1990s saw the emergence of a transformative idea: rather than relying on spe-

cialized supercomputers, parallel computing could be achieved using networks of in-

expensive, commodity hardware. This concept was realized through the development

of Beowulf clusters, pioneered at NASA’s Goddard Space Flight Center in 1994 [5].

A Beowulf cluster consisted of standard personal computers connected via Ethernet

and running open-source software, typically Linux.

The Beowulf approach democratized access to high-performance computing, al-

lowing universities, small research groups, and even individuals to assemble parallel

systems at low cost. Around the same time, the standardization of the Message Pass-

ing Interface (MPI) in 1994 provided a portable and efficient means of inter-process

communication, enabling programs to scale across distributed memory systems [3].

Open-source software became the backbone of modern cluster computing. Tools

such as GCC (GNU Compiler Collection), MPICH (Message Passing Interface Chameleon),

and later OpenMPI (Open Message Passing Interface), combined with Linux-based

job schedulers like PBS (Portable Batch System) and SLURM (Simple Linux Util-

ity for Resource Management), created an ecosystem that replicated many of the

capabilities of large supercomputers using modest resources. Educational projects

such as BYOC (“Build Your Own Cluster”) exemplified this approach in teaching

environments [8, 9].

The early 2000s marked a shift from specialized supercomputers toward parallelism

at all scales. Processor manufacturers began integrating multiple cores onto single

chips, making parallel computing a standard feature of consumer hardware. In 2006,

NVIDIA introduced CUDA (Compute Unified Device Architecture), which enabled

general-purpose programming of graphics processing units (GPUs), bringing massive

1.3 Applications of Cluster Computing in Academics 5

parallelism to scientific and engineering applications [10].

Contemporary high-performance systems combine CPUs, GPUs, and other accel-

erators in heterogeneous architectures. The achievement of petascale computing in

2008 with the Roadrunner system at Los Alamos National Laboratory, and exascale

performance in 2022 with Frontier at Oak Ridge National Laboratory, represent mile-

stones in computational capability [4]. These systems are complemented by the rise

of cloud-based HPC services, allowing users to provision virtual supercomputers on

demand.

Energy efficiency and scalability have become critical considerations in modern

HPC design. The Green500 list now ranks supercomputers by performance per watt,

reflecting the growing emphasis on sustainable computation. Open frameworks such

as MPI and OpenMP continue to evolve to support increasingly complex hardware.

1.3 Applications of Cluster Computing in Academics

While national laboratories pursue exascale performance, smaller-scale clusters re-

main vital for education and research. University clusters allow students to develop

practical skills in distributed computing, system administration, and scientific pro-

gramming. By working with physical hardware and real schedulers, students gain

an understanding of parallel job submission, process communication, and resource

management that cannot be replicated in purely theoretical coursework.

Educational clusters such as Hope College’s BYOC project and similar efforts

using Raspberry Pi or x86 nodes demonstrate the accessibility of modern HPC tech-

niques [6]. The compute cluster constructed for this thesis project follows in that

tradition, providing an affordable, reproducible, and instructive system that bridges

the gap between classroom theory and real-world computation.

6 Chapter 1 Background and History of Parallel and High-Performance Computing

Thus, the evolution of computing from serial to parallel systems reflects the contin-

ual pursuit of higher performance and scalability. From the earliest vector processors

to modern heterogeneous clusters, the field of high-performance computing has ad-

vanced through a combination of hardware innovation and open collaboration. The

rise of cluster computing—built on commodity hardware and open-source software—

has made supercomputing accessible to researchers and students alike.

The following chapter introduces the theoretical principles and software paradigms

that enable parallel systems to function effectively, forming the conceptual foundation

for the design and implementation of the cluster built in this study.

Chapter 2

Cluster Software Foundations

High-performance computing (HPC) systems rely on collections of interconnected

computers, known as clusters, to perform large-scale numerical or data-intensive com-

putations efficiently. A cluster typically consists of multiple compute nodes managed

by a central head node or controller. Each node runs a compatible operating sys-

tem, shares access to a common file system, and communicates over a high-speed

network. Software layers such as job schedulers and message passing libraries pro-

vide the framework that enables distributed tasks to be coordinated and executed in

parallel.

This chapter provides an overview of the major software components that make

up a modern Beowulf-style compute cluster. The focus is on the theoretical and

architectural foundations that informed the implementation described in Chapter 3.

The technologies discussed include the Linux operating system, workload managers

such as SLURM, the Message Passing Interface (MPI), and supporting systems for

automated deployment and node communication.

7

8 Chapter 2 Cluster Software Foundations

2.1 Linux in High-Performance Computing

Since the early 2000s, Linux has become the dominant operating system for high-

performance and supercomputing environments. The reasons for its widespread adop-

tion include open-source availability, modularity, scalability, and robust support for

scientific and engineering workloads. Linux distributions can be customized to provide

lightweight installations that maximize computational performance while minimizing

overhead.

Rocky Linux, a downstream derivative of Red Hat Enterprise Linux (RHEL), is

particularly suited to cluster environments because it maintains binary compatibility

with enterprise-grade packages while remaining freely available. The stability and

long-term support of Rocky Linux make it an ideal foundation for systems where re-

producibility and consistency are essential. Chapter 3 details the specific installation

and configuration of Rocky Linux 9.6 used in this project.

2.2 Job Scheduling and Resource Management

In a shared computing environment, user tasks must be efficiently allocated among

available hardware resources. Job schedulers and resource managers automate this

process, ensuring that computational workloads are executed fairly, efficiently, and

without conflict. The scheduler maintains queues of user-submitted jobs, tracks node

availability, and assigns resources according to policies such as fair-share scheduling,

priority weighting, or backfilling.

The Simple Linux Utility for Resource Management (SLURM) is one

of the most widely used open-source workload managers in HPC. SLURM operates

through a distributed set of daemons: a central controller (slurmctld) that manages

job queues and resource states, and node daemons (slurmd) that execute assigned

2.3 Parallel Programming with MPI 9

tasks. Users interact with the system through commands such as sbatch, srun, and

squeue. SLURM’s design supports scalability from small research clusters to some

of the largest supercomputers in operation.

2.3 Parallel Programming with MPI

While a scheduler coordinates when jobs are run, the Message Passing Interface

(MPI) defines how programs communicate across distributed memory systems. MPI

provides standardized functions that allow independent processes to exchange data

through explicit message passing. The model enables scalable parallelism by dividing

computational tasks among multiple processors, each performing calculations on a

subset of data.

Key MPI concepts include ranks (unique identifiers for each process), communi-

cators (groups of processes that can communicate), and collective operations such as

broadcast, scatter, and reduce. The flexibility of MPI allows developers to parallelize

algorithms in both domain-decomposition and task-decomposition paradigms.

This project utilizes the OpenMPI implementation of the MPI standard, chosen

for its portability, performance, and seamless integration with SLURM. OpenMPI

supports a range of interconnects and can automatically detect and optimize commu-

nication paths across nodes. Chapter 4 presents benchmark results that demonstrate

the scaling performance of the implemented system using OpenMPI.

2.4 Automated Deployment and Network Boot

Efficient cluster deployment requires the ability to install and configure many com-

pute nodes consistently. Manual installation on each node is impractical and prone

10 Chapter 2 Cluster Software Foundations

to human error. Instead, automated installation mechanisms are used to provision

operating systems and software over the network.

The Preboot Execution Environment (PXE) allows nodes to boot directly

from a network interface without local storage media. When configured, a node re-

quests boot instructions from a server via DHCP and downloads a bootloader and

kernel image via TFTP or HTTP. PXE is commonly used in conjunction with Kick-

start files, which contain predefined installation parameters such as partition layouts,

package selections, and post-installation scripts. Together, PXE and Kickstart enable

fully unattended and reproducible node provisioning.

This approach greatly simplifies maintenance and scalability. As discussed in

Chapter 3, the head node in this project hosts PXE and HTTP services that automate

installation of all compute nodes, ensuring a consistent software environment across

the cluster.

2.5 Secure Communication and Shared Filesystems

Communication between nodes in a cluster must be both secure and efficient. The Se-

cure Shell (SSH) protocol provides encrypted remote login and command execution

capabilities, enabling passwordless communication through key-based authentication.

SSH is also used by job schedulers to launch and monitor processes across nodes.

In addition to secure communication, a shared filesystem is essential for simplifying

data access and management. The Network File System (NFS) protocol allows

directories on the head node to be exported and mounted by compute nodes as if

they were part of the local filesystem. This shared storage model enables all nodes

to access the same executables, datasets, and output files without redundant copies.

2.6 Summary 11

2.6 Summary

This chapter has introduced the foundational software and networking technologies

that underpin the construction and operation of a Beowulf-style compute cluster. The

concepts of Linux-based system architecture, workload scheduling, parallel computa-

tion, automated deployment, and secure communication form the basis of scalable

high-performance computing systems.

The next chapter, Chapter 3, describes the practical implementation of these

technologies in the development of a new compute cluster. Each configuration step,

from PXE network setup to SLURM and OpenMPI integration, is documented in

detail to provide a reproducible framework for future educational and research use.

12 Chapter 2 Cluster Software Foundations

Head / Control Plane

Network Fabric

Compute Plane

Head Node

(PXE + Control)
/admin

Head services:

dnsmasq (DHCP/TFTP/DNS)

httpd (Kickstart/ISO)

NFS server

slurmctld

Network Switch

1 GbE ports, full-duplex

Topology:

Star topology

Dedicated links

(non-blocking switch)

Compute Node 1

6 CPU cores

Compute Node 2

6 CPU cores

Compute Node 3

6 CPU cores

Compute services:

slurmd

NFS mount: /admin

slurmctld → slurmd

thru the switch

Figure 2.1 Cluster architecture showing network topology, storage layout
with NFS mounts, and service roles.

Chapter 3

The Construction of a New Cluster

This chapter serves as a more detailed record of the steps taken to build and config-

ure the compute cluster used in this project, code is included in the appendix. The

goal was not only to create a functional high-performance computing environment,

but also to document the process in sufficient detail that the cluster could be re-

constructed or expanded by future students. The major steps included making the

head node self-reinstallable, setting up network boot (PXE) services, configuring se-

cure communication and shared storage, and deploying the workload manager and

message-passing tools necessary for parallel computation.

3.1 Head Node Configuration and Self-Reinstallation

The first step in building the cluster was preparing the head node to serve as both a

management server and a PXE boot host for future compute nodes. The head node

was installed with Rocky Linux 9.6, using a primary NVMe disk (nvme0) partitioned

into two parts: one for the operating system and a second partition mounted at

/admin. The /admin directory was used to store ISO images, kickstart configuration

13

14 Chapter 3 The Construction of a New Cluster

files, and related resources necessary for automated reinstallations.

A key design goal was to make the head node itself self-reinstallable. By config-

uring a local PXE service and maintaining a kickstart file tailored for the head node,

the system could be fully reinstalled from its own resources. This design ensures that

the entire cluster can be rebuilt from scratch without external installation media,

simplifying maintenance and reproducibility.

Starting with a USB drive loaded with the unpackaged ISO of the desired Linux

distribution, Rocky 9.6 in this case, insert the USB and complete a first install of

the new operating system on the head node. This first installation will generate a

blank kickstart file at /root/anaconda-ks.cfg. Inside this kickstart file we can add

instructions to add the /admin partition and its file structure. Save this kickstart in

a safe location, I used a second USB thumb drive to ensure the kickstart would not

be overwritten. Once this is done we can perform a new installation of the operating

system, using the newly modified kickstart to enact this new partitioning plan. This

is the Second installation.

After the second installation is completed, the ISO files and the kickstart can

be copied into the /admin partition at /admin/iso/rockyLinux/Rocky-9.6/ and

/admin/ks/headnode/ks.cfg respectively. Additionally, now a new separate kick-

start file containing instructions to set up a compute node can be created at

/admin/ks/computenode/ks.cfg.

This new kickstart does not need any specific instructions for drive partitioning,

and won’t require any modification at this time.

To make the head node self-reinstallable, a custom GRUB (Grand Unified Boot-

loader) menu entry was created that launches the Rocky Linux installer directly from

the local ISO and kickstart files stored under /admin. This approach allows the

system to be rebuilt automatically without external media.

3.2 PXE Boot and Network Installation Service 15

The GRUB configuration file is typically found at /etc/grub.d/40 custom. Open

and add the following code to /etc/grub.d/40 custom to add a new boot entry.

menuentry ’Reinstall Head Node (Automated)’ {

set root=(hd0,1)

linuxefi /admin/rocky9/images/pxeboot/vmlinuz \

inst.stage2=file:///admin/rocky9 \

inst.ks=file:///admin/kickstarts/headnode.ks

initrdefi /admin/rocky9/images/pxeboot/initrd.img

}

The configuration points the installer to the kernel (vmlinuz) and initial ramdisk

(initrd.img) from the ISO, and specifies the kickstart file and repository path. Save

the GRUB configuration with the following command:

sudo grub2-mkconfig -o /boot/efi/EFI/rocky/grub.cfg

Now when the headnode reboots this option will appear as one of the boot options,

thus allowing the computer to return to the conditions specified by the kickstart

whenever necessary.

3.2 PXE Boot and Network Installation Service

A critical component of the cluster design was establishing a PXE (Preboot Execution

Environment) service that allowed both the head node and all future compute nodes

to install Rocky Linux automatically over the network. This setup ensures that the

cluster can be rebuilt or expanded quickly without requiring manual intervention or

physical installation media.

16 Chapter 3 The Construction of a New Cluster

3.2.1 PXE Overview

PXE booting enables computers to load a boot image directly from the network

instead of a local disk. The process requires three main services:

1. DHCP to assign IP addresses and tell clients where to find the bootloader.

2. TFTP to provide the bootloader and kernel/initrd images.

3. HTTP (or NFS) to serve the installation files and kickstart configuration.

For this cluster, these services were consolidated on the head node using a minimal

dnsmasq configuration for DHCP and TFTP, and httpd (Apache) for hosting the

installation files.

3.2.2 Directory Structure

All PXE-related files were stored on the head node’s /admin partition, organized as

follows:

/admin/

|-- rocky9/ # ISO contents copied here

|-- kickstarts/ # Kickstart files (e.g., headnode.ks, compute.ks)

The Rocky Linux ISO was mounted and its contents copied into /admin/rocky9/,

allowing the installer to fetch required packages over HTTP. The kickstart files were

placed in /admin/kickstarts/ so they could be accessed via links such as:

http://headnode/admin/kickstarts/compute.ks

The EFI bootloader files and GRUB configuration used for PXE booting were

stored in a separate directory at /root/tftpboot, which served as the TFTP root.

In this project UEFI GRUB

3.2 PXE Boot and Network Installation Service 17

3.2.3 Configuring dnsmasq

A minimal dnsmasq configuration provided both DHCP and TFTP functionality. The

configuration file /etc/dnsmasq.conf included only the essential directives:

interface=enp1s0

dhcp-range=192.168.1.100,192.168.1.200,12h

dhcp-boot=grubx64.efi

enable-tftp

tftp-root=/root/tftpboot

log-queries

This setup assigns IP addresses to PXE clients on the private cluster network and

points them to the EFI bootloader served from the TFTP root.

The bootloader files (grubx64.efi, shimx64.efi, and grub.cfg) were placed in

/root/tftpboot/. These were copied from the Rocky Linux ISO’s EFI directory,

ensuring compatibility with UEFI-based compute nodes.

3.2.4 Configuring httpd

The httpd web server was installed and configured to serve files from /admin. In

/etc/httpd/conf.d/admin.conf, the directory was exposed via:

Alias /admin/ "/admin/"

<Directory "/admin/">

Options Indexes FollowSymLinks

AllowOverride None

Require all granted

</Directory>

18 Chapter 3 The Construction of a New Cluster

After restarting httpd, both the ISO contents and kickstart files became accessible

over the internal network.

3.2.5 GRUB Boot Configuration

For UEFI clients, the PXE boot process used GRUB EFI instead of the legacy PX-

ELINUX loader. The configuration file /root/tftpboot/grub.cfg defined the menu

entries and installation parameters:

menuentry ’Rocky Linux 9.6 Automated Install’ {

linuxefi /rocky9/images/pxeboot/vmlinuz \

inst.ks=http://headnode/admin/kickstarts/compute.ks \

inst.repo=http://headnode/admin/rocky9/

initrdefi /rocky9/images/pxeboot/initrd.img

}

When a compute node booted over the network, GRUB loaded the kernel and

initrd files from the TFTP server and then retrieved the installation and configuration

data over HTTP.

3.2.6 Testing and Verification

After enabling and starting both dnsmasq and httpd, a test PXE boot was performed

using the head node itself. The system successfully booted via the network, fetched

its kickstart file, and reinstalled automatically, confirming that the PXE service was

correctly configured. Once validated, the same setup was used to provision additional

compute nodes, allowing fully unattended installations consistent with the head node

environment.

3.3 Secure Shell (SSH) Configuration 19

3.3 Secure Shell (SSH) Configuration

After node installation, passwordless SSH was configured to allow secure and friction-

less communication between the head node and compute nodes. SSH key pairs were

generated on the head node and distributed to all nodes, allowing commands and file

transfers to occur without manual password entry. This step is essential for cluster

management tasks and for SLURM job scheduling, which relies on seamless remote

execution.

3.4 Network File System (NFS) Setup

A shared file system was established using the Network File System (NFS) protocol

to provide each node with access to common files such as software packages, user

directories, and administrative scripts. Centralizing these resources on the head node

simplifies management and ensures consistency across the cluster.

The head node exported the /admin directory, which contained installation re-

sources, and a dedicated /shared directory for user data. The export configuration

file /etc/exports included the following lines:

/admin *(ro,sync,no_root_squash)

/shared *(rw,sync,no_root_squash)

These entries make both directories accessible to all nodes on the internal net-

work. The sync option ensures that file writes are committed to disk before the

server replies, providing data consistency. The no root squash directive allows ad-

ministrative scripts executed by root on compute nodes to retain their privileges when

accessing shared directories, which is important for automated provisioning.

After updating the exports file, the NFS service was enabled and started:

20 Chapter 3 The Construction of a New Cluster

sudo systemctl enable nfs-server

sudo systemctl start nfs-server

exportfs -rav

Each compute node mounted the shared directories automatically at boot time.

The following entries were added to /etc/fstab:

headnode:/admin /mnt/admin nfs defaults 0 0

headnode:/shared /shared nfs defaults 0 0

With NFS configured, all nodes in the cluster shared a common software and data

environment. This arrangement allowed the system administrator to install software,

distribute scripts, and store results in a unified workspace, facilitating collaboration

and maintenance.

3.5 SLURM, MUNGE, and OpenMPI Configura-

tion

With the hardware and basic networking infrastructure in place, the next major

step in constructing the cluster was configuring the software stack responsible for

authentication, workload management, and parallel execution. This stack consisted of

MUNGE for node authentication, SLURM for job scheduling and resource allocation,

and OpenMPI for distributed parallel computation.

3.5.1 MUNGE Authentication

MUNGE (MUNGE Uid ’N’ Gid Emporium) was used to provide lightweight, credential-

based authentication between cluster nodes. Rather than relying on centralized user

3.5 SLURM, MUNGE, and OpenMPI Configuration 21

credentials or external directory services, MUNGE uses symmetric key authentication

to verify that messages originate from trusted nodes within the cluster.

A single MUNGE key was generated on the head node and securely distributed

to all compute nodes. This key was stored at /etc/munge/munge.key with strict

ownership and permission settings, ensuring that only the munge user could access it.

Once the key was synchronized across all nodes, the MUNGE daemon was enabled

and started system-wide.

This approach ensured that SLURM daemons could authenticate with one another

while keeping the authentication mechanism simple, reproducible, and well-suited to

a small instructional cluster.

3.5.2 SLURM Workload Manager

SLURM served as the cluster’s primary workload manager. It was responsible for

job submission, scheduling, node allocation, and resource tracking. The head node

was designated as the SLURM controller, running the slurmctld daemon, while each

compute node ran a slurmd daemon responsible for executing assigned tasks.

The core SLURM configuration was defined in the slurm.conf file, a complete

version of which is included in Appendix B. Key configuration concepts are summa-

rized below.

Control Machine

The ControlMachine parameter in slurm.conf specifies the hostname of the node

responsible for managing the cluster. In this deployment, the head node was desig-

nated as the control machine. All scheduling decisions, job state tracking, and node

management operations originated from this node.

22 Chapter 3 The Construction of a New Cluster

Node Definitions

Each compute node was explicitly defined in the configuration file using a NodeName

entry. These definitions included the node hostname, number of CPU cores, and

current operational state. Explicit node definitions allowed SLURM to accurately

track available resources and assign jobs accordingly.

Nodes were grouped logically using naming patterns, enabling the configuration

to scale cleanly if additional compute nodes were added in the future.

Partition Definitions

SLURM partitions were used to organize available compute resources into schedulable

groups. For this cluster, a single default partition was defined that included all

compute nodes. This partition served as the primary execution environment for user

jobs.

Partition-level configuration allowed limits to be placed on runtime, node usage,

and access control, providing flexibility for future expansion or instructional use cases.

3.5.3 OpenMPI Integration

OpenMPI provided support for parallel execution using the Message Passing Interface

(MPI) standard. SLURM’s native integration with MPI allowed users to launch dis-

tributed programs using either srun or mpirun, with SLURM automatically handling

process placement and resource allocation.

This integration simplified the user workflow by eliminating the need for manual

hostfiles and ensuring that MPI processes were launched only on nodes allocated by

the scheduler.

3.6 Testing and Validation 23

3.5.4 System Integration Summary

Together, MUNGE, SLURM, and OpenMPI formed the functional core of the clus-

ter. MUNGE ensured secure inter-node authentication, SLURM provided structured

access to shared compute resources, and OpenMPI enabled scalable parallel execu-

tion. This software stack allowed multiple users to submit and execute parallel jobs

efficiently while maintaining centralized control and reproducibility.

3.6 Testing and Validation

After completing the PXE, SSH, and NFS configurations, a validation process was

performed to ensure that all cluster components operated as intended. The following

criteria were tested:

1. PXE Boot Functionality: Each node was tested to confirm successful net-

work boot and automated installation.

2. Network Connectivity: All nodes were verified to have IP connectivity and

name resolution within the cluster network.

3. Passwordless SSH: Secure, key-based authentication was confirmed between

the head node and compute nodes.

4. NFS Mounts: Shared directories were confirmed to mount correctly and re-

main accessible after reboots.

5. SLURM Integration: A basic MPI job was submitted through sbatch and

completed successfully across multiple nodes.

The successful completion of these tests demonstrated that the cluster could re-

liably deploy, communicate, and execute distributed computations. The configura-

24 Chapter 3 The Construction of a New Cluster

tion achieved the project’s goal of providing a reproducible and educational high-

performance computing platform.

3.7 Future Work

While the current configuration achieves a functional and scalable compute cluster,

several extensions and improvements are possible:

� Monitoring and Logging: Deploying a monitoring suite such as Ganglia,

Grafana, or Prometheus would enable real-time performance tracking and re-

source visualization.

� RAID Storage: Refinement of the networked drives that the nodes read from

and write to with a RAID setup will protect the cluster from data loss in the

event of a failure in the storage drives

� Containerized Workflows: Adding support for container runtimes such as

Singularity or Apptainer would allow users to run isolated, reproducible software

environments.

� Job Benchmarking and Optimization: Continued performance testing

could identify bottlenecks and guide optimizations in scheduling and I/O han-

dling.

Together, these enhancements would strengthen the cluster’s usability, scalabil-

ity, and long-term maintainability, paving the way for future student research and

teaching applications.

Chapter 4

Benchmarking and Performance

Results

To evaluate the performance and scalability of the compute cluster constructed for this

project, a series of benchmark tests were conducted using distributed-memory paral-

lel computation. The tests were designed to assess both computational throughput

and communication efficiency when executing parallel workloads under the SLURM

workload manager.

The benchmark program computed the numerical value of π using a parallel im-

plementation of the midpoint integration method. This approach provided a simple

but effective test of the cluster’s performance, as it involved minimal communication

between processes and allowed for controlled scaling across multiple nodes.

All parallel programs were compiled using mpicc and executed through SLURM

batch scripts using srun or mpirun. Each job recorded its total runtime, number of

cores utilized, and the computed value of π to a shared output file. The full source

code is included in Appendix A.

The benchmark evaluated the integral

25

26 Chapter 4 Benchmarking and Performance Results

π =
∫ 1

0

4

1 + x2
dx, (4.1)

using the midpoint rule for numerical integration. The integrand was defined

as

f(x) =
4

1 + x2
, (4.2)

x

f(x)

0 1[0, 1]

f(x) = 4
1+x2

Figure 4.1 Midpoint-rule approximation of
∫ 1

0

4

1 + x2
dx using subintervals

of width h.

and the integral was approximated by dividing the interval [0, 1] into N = 109

equal subintervals of width h = 1/N . The midpoint rule gives

π ≈ h
N−1∑
i=0

f
((

i+
1

2

)
h
)
. (4.3)

4.1 Parallelizing the Task 27

This method is well suited to parallelization because each term in the summation

can be computed independently.

4.1 Parallelizing the Task

The computation was parallelized using the Message Passing Interface (MPI). The

total range of integration was divided evenly among p MPI processes. Process r,

where r ∈ [0, p− 1], computed the local partial sum

Sr =

(r+1)N
p

−1∑
i= rN

p

f
((

i+
1

2

)
h
)
, (4.4)

and the global sum was recovered through a reduction operation:

π ≈ h
p−1∑
r=0

Sr. (4.5)

Each process computed its local contribution independently and only commu-

nicated during the final reduction stage. The MPI Reduce() function was used to

combine the results, with the root process (rank 0) writing the final value of π, along

with timing information, to an output file.

The elapsed time for each run was measured using the MPI Wtime() function,

providing accurate wall-clock timing for the entire computation.

All benchmarks were executed under the SLURM workload manager. Batch

scripts defined the resource allocation parameters (nodes, tasks per node, and wall

time limits) and executed the MPI program using srun. Typical configurations in-

cluded 1, 2, 4, 5, and 6 cores, distributed across one or more nodes. Do note that

because MPI Reduce() is only called once at the end, this benchmark is not a good

measure of network communication speeds which can be a significant bottleneck for

28 Chapter 4 Benchmarking and Performance Results

more complex parallel computing tasks, where in order to account for boundary con-

ditions MPI Reduce() must be called after every iteration.

Each job produced an output file containing:

� Number of cores used

� Computed value of π

� Total execution time (in seconds)

An example of a minimal SLURM submission script is shown below:

#!/bin/bash

#SBATCH --job -name=pi_benchmark

#SBATCH --output=pi_%j.out

#SBATCH --ntasks =8

#SBATCH --time =00:10:00

#SBATCH --partition=standard

module load openmpi

srun ./ pi_mpi

Listing 4.1 Example SLURM batch script for benchmarking runs.

4.2 Performance and Scaling Results

The total runtime T (p) was recorded for varying numbers of cores. The speedup

S(p) and parallel efficiency E(p) were calculated as

S(p) =
T (1)

T (p)
, E(p) =

S(p)

p
. (4.6)

4.2 Performance and Scaling Results 29

An ideal speedup would follow S(p) = p, corresponding to perfect linear scaling.

In practice, deviations from this ideal behavior arise due to communication overhead,

memory access latency, and synchronization costs between MPI processes.

0 2 4 6 8 10 12
0

50

100

150

200

250

300

Number of Cores Used

T
im
e
T
ak
en

(s
)

Compute Time vs Number of Cores

Best Fit

Ideal Scaling

Figure 4.2 Measured execution time as a function of the number of cores
used. The curve demonstrates strong scaling for small process counts, with
increasing communication overhead at higher core counts. The dashed line
represents an ideal compute time with no delays from communication.

The total runtime T (p) was recorded for varying numbers of cores. The speedup

S(p) and parallel efficiency E(p) were calculated as

S(p) =
T (1)

T (p)
, E(p) =

S(p)

p
. (4.7)

An ideal speedup would follow S(p) = p, corresponding to perfect linear scaling.

In practice, deviations from this ideal behavior arise due to communication overhead,

memory access latency, and synchronization costs between MPI processes.

The results show that the cluster achieves near-linear speedup for up to several

cores, confirming efficient CPU utilization and minimal network bottlenecks. Beyond

30 Chapter 4 Benchmarking and Performance Results

0 2 4 6 8 10 12

0

2

4

6

8

S
pe
ed
up

Measured vs Ideal Speedup

Measured speedup

Best-fit trend

Ideal speedup (S(N)=N)

Figure 4.3Measured versus ideal speedup. Ideal linear scaling is represented
by the dashed line, while the measured curve shows realistic performance
limited by inter-process communication and synchronization.

that range, speedup begins to level off as the cost of inter-process communication

increases relative to computation time.

4.3 System Stability and Reproducibility

Each benchmark test was repeated multiple times to verify consistency. SLURM

logs confirmed correct participation of all nodes and no job failures. The system

demonstrated stable operation across repeated tests, validating the reliability of both

the PXE-based deployment and the SLURM configuration.

The benchmarking results confirmed that the cluster supports efficient distributed-

memory parallel computation using MPI. The midpoint integration benchmark pro-

vided a simple yet effective measure of performance, showing strong scaling across

multiple cores and nodes. These tests also verified the proper configuration of SLURM,

MPI communication, and file output systems.

4.3 System Stability and Reproducibility 31

The complete C source code used in this benchmark, along with sample SLURM

batch scripts, is included in Appendix A.

32 Chapter 4 Benchmarking and Performance Results

Chapter 5

Conclusion

The primary goal of this project was to design, build, and validate a functional

high-performance computing (HPC) cluster using recycled hardware, modern Linux

tooling, and automated deployment techniques. By leveraging Rocky Linux 9.6 as

the operating system and PXE boot for node provisioning, the cluster was configured

to allow rapid rebuilds and easy expansion. The head node was designed to be self-

reinstallable using local ISO and kickstart files, ensuring that both maintenance and

system recovery can be performed with minimal manual intervention.

The configuration of SLURM as the job scheduler, MUNGE for authentication,

and OpenMPI for parallel computation demonstrated that the cluster could effectively

manage multi-node, multi-core workloads. Benchmarking with a simple numerical

integration program showed near-linear scaling for moderate core counts, confirming

that both the hardware and software environment were capable of supporting dis-

tributed computation. Deviations from ideal performance at higher core counts were

consistent with expected communication overhead and limitations inherent in paral-

lel processing, providing a realistic demonstration of HPC concepts for educational

purposes.

33

34 Chapter 5 Conclusion

Several key takeaways emerged from this project. First, careful planning of the

head node and shared administration directories simplified the deployment and ex-

pansion of compute nodes. Centralizing ISO images, kickstart files, and PXE boot

configurations allowed for reproducible system builds, reducing errors and manual ef-

fort. Second, integrating industry-standard tools such as SLURM and OpenMPI pro-

vided a practical environment for testing parallel programs, while exposing students

to real-world HPC software paradigms. Finally, leveraging inexpensive or recycled

hardware showed that functional and scalable compute clusters can be built without

prohibitive cost, highlighting the accessibility of high-performance computing in an

educational setting.

Beyond technical accomplishments, this project underscored the importance of

documentation, maintainability, and modular design. Detailed records of system

setup, configuration, and benchmarking ensure that future students and researchers

can reproduce or expand the cluster with confidence. The combination of automated

provisioning, networked file systems, and secure communication provides a robust

framework that supports both learning and research, reinforcing the educational value

of hands-on HPC experience. Ultimately, the cluster constructed in this project rep-

resents not only a computational resource but also a teaching tool that embodies the

principles of scalability, automation, and reproducibility in high-performance com-

puting.

Appendix A

Benchmark Program Source Code

#include <mpi.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

double f(double x) {

return 4.0 / (1.0 + x*x);

}

int main(int argc , char* argv []) {

int rank , size;

MPI_Init (&argc , &argv);

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

MPI_Comm_size(MPI_COMM_WORLD , &size);

35

36 Chapter A Benchmark Program Source Code

const long long N = 1000000000; // Number of intervals (1

billion)

double h = 1.0 / (double)N;

double local_sum = 0.0, pi = 0.0;

// Split work across ranks

long long start = (N / size) * rank;

long long end = (rank == size -1) ? N : start + (N / size

);

double t0 = MPI_Wtime ();

for (long long i = start; i < end; i++) {

double x = h * ((double)i + 0.5);

local_sum += f(x);

}

local_sum *= h;

// Reduce all local sums to rank 0

MPI_Reduce (&local_sum , &pi, 1, MPI_DOUBLE , MPI_SUM , 0,

MPI_COMM_WORLD);

double t1 = MPI_Wtime ();

// Only rank 0 writes results

if (rank == 0) {

37

FILE *fp = fopen("/home/mpiuser/pi_result.txt", "w");

if (fp == NULL) {

fprintf(stderr , "Error␣opening␣file␣for␣writing\n"

);

MPI_Abort(MPI_COMM_WORLD , 1);

}

fprintf(fp , "Number␣of␣cores␣used:␣%d\n", size);

fprintf(fp , "Computed␣value␣of␣pi:␣%.15f\n", pi);

fprintf(fp , "Time␣taken␣(s):␣%.6f\n", t1 - t0);

fclose(fp);

printf("Computation␣complete.␣Results␣saved␣to␣/home/

mpiuser/pi_result.txt\n");

}

MPI_Finalize ();

return 0;

}

Listing A.1 MPI benchmark program used for numerical estimation of π.

38 Chapter A Benchmark Program Source Code

Appendix B

SLURM Configuration File

39

40 Chapter B SLURM Configuration File

Appendix C

Headnode Kickstart File

Generated by Anaconda 34.25.5.17

Generated by pykickstart v3.32

#version=RHEL9

Graphical install is optional

#graphical

%addon com_redhat_kdump --enable --reserve -mb=’auto’

%end

Keyboard layout and system language

keyboard --xlayouts=’us’

lang en_US.UTF -8

Package group

%packages

@core

41

42 Chapter C Headnode Kickstart File

@^graphical -server -environment

cluster management and job scheduling

munge

munge -libs

munge -devel

slurm

slurm -slurmd

slurm -slurmctld

MPI packages

openmpi

openmpi -devel

#networking and time synchroization

nfs -utils

chrony

PXE services

dnsmasq

tftp -server

httpd

other useful utilities

vim

wget

curl

43

bash -completion

%end

Run the Setup Agent on first boot

firstboot --enable

PRE: Dynamically set up /admin partition depending on

whether "ADMIN" partition already exists

%pre

#!/bin/sh

admin_dev=$(blkid -L ADMIN)

if [-n "$admin_dev"]; then

partname=$(basename "$admin_dev")

echo "part␣/admin␣--fstype=xfs␣--noformat␣--onpart=${

partname}" > /tmp/admin -ks-partition.ks

else

echo "part␣/admin␣--fstype=xfs␣--size =20480␣--ondisk=

nvme0n1␣--label=ADMIN" > /tmp/admin -ks -partition.ks

fi

%end

Disk and partition layout

ignoredisk --only -use=nvme0n1

clearpart --all --initlabel --disklabel=gpt --drives=nvme0n1

bootloader --boot -drive=nvme0n1

44 Chapter C Headnode Kickstart File

part /boot/efi --fstype=efi --size =600 --fsoptions="umask

=0077 , shortname=winnt" --ondisk=nvme0n1

part /boot --fstype=xfs --size =1024 --ondisk=nvme0n1

%include /tmp/admin -ks-partition.ks

part / --fstype=xfs --size =81920 --grow --ondisk=

nvme0n1

network --bootproto=static --ip =192.168.100.1 --netmask

=255.255.255.0 --gateway =192.168.100.1 --device=eno1 --

activate --hostname=headnode.localdomain

Timezone and root password

timezone America/New_York --utc

rootpw --plaintext TempP1234!

immediately after install we want to run all the scripts to

setup our installed packages

%post --log=/root/kickstart -post.log

enabled and start chronyd

systemctl enable chronyd

systemctl start chronyd

Munge setup

if [! -f /etc/munge/munge.key]; then

/usr/sbin/create -munge -key

45

fi

chown munge:munge /etc/munge/munge.key

chmod 400 /etc/munge/munge.key

systemctl enable munge

systemctl start munge

Slurm services

systemctl enable slurmctld

systemctl start slurmctld

systemctl enable slurmd

systemctl start slurmd

enable and start dnsmasq for DHCP/TFTP

systemctl enable dnsmasq

systemctl start dnsmasq

systemctl enable tftp.socket

systemctl start tftp.socket

systemctl enable httpd

systemctl start httpd

adjust firewall rules for all services

firewall -cmd --permanent --add -service=munge

firewall -cmd --permanent --add -service=slurmctld

firewall -cmd --permanent --add -service=slurmd

firewall -cmd --permanent --add -service=dnsmasq

46 Chapter C Headnode Kickstart File

firewall -cmd --permanent --add -service=tftp

firewall -cmd --permanent --add -service=http

firewall -cmd --reload

%end

POST (non -chroot): Add GRUB menu entry for PXE reinstall

%post --nochroot

cat << ’EOF’ >> /mnt/sysimage/boot/grub2/custom.cfg

menuentry ’Install␣Rocky␣9.6␣from␣/Admin ’ {

linuxefi /images/pxeboot/vmlinuz inst.repo=http

://192.168.100.1/ admin/iso/rockyLinux/Rocky9 .6/ inst.ks

=http ://192.168.100.1/ admin/ks/headnode/ks.cfg

initrdefi /images/pxeboot/initrd.img

}

EOF

%end

Listing C.1 Kickstart file used for the headnode in this project.

Bibliography

[1] David A. Patterson and John L. Hennessy. Computer Organization and Design:

The Hardware/Software Interface. Morgan Kaufmann, 5th edition, 2017.

[2] Jack Dongarra, W. Orser, M. Rosing, and R. Smith. A history of high perfor-

mance computers. Communications of the ACM, 33(9):47–58, 1990.

[3] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Par-

allel Programming with the Message Passing Interface. MIT Press, 3rd edition,

2014.

[4] Jack Dongarra, Pete Beckman, Omar Aaziz, et al. Report on the achievement of

the first exascale supercomputer. Technical report, U.S. Department of Energy,

Exascale Computing Project, 2022.

[5] Thomas Sterling, Daniel Savarese, John E. Becker, John E. Dorband, Udaya

Ranawake, and Charles V. Packer. Beowulf: A parallel workstation for scien-

tific computation. In Proceedings of the International Conference on Parallel

Processing, pages 11–14, 1995.

[6] Brian Barrett, Jason Cope, Aaron Fahey, Jared Kienzle, and John Muehlbauer.

Raspberry pi clusters for teaching parallel computing. Computing in Science &

Engineering, 21(5):82–88, 2019.

47

48 BIBLIOGRAPHY

[7] Michael J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,

54(12):1901–1909, 1966.

[8] Nathan R. Vance, Michael L. Poublon, and William F. Polik. Byoc: Build your

own cluster, part i – design. Faculty Publications, (1439), 2016. Paper 1439.

[9] Nathan R. Vance, Michael L. Poublon, and William F. Polik. Byoc: Build your

own cluster, part ii – installation. Faculty Publications, (1438), 2016. Paper

1438.

[10] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Proces-

sors: A Hands-on Approach. Morgan Kaufmann, 4th edition, 2021.

	Title Page
	Copyright
	Department Approval
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Background and History of Parallel and High-Performance Computing
	1.1 The Beginning of Digital Computing
	1.2 Distributed and Cluster Computing
	1.3 Applications of Cluster Computing in Academics

	2 Cluster Software Foundations
	2.1 Linux in High-Performance Computing
	2.2 Job Scheduling and Resource Management
	2.3 Parallel Programming with MPI
	2.4 Automated Deployment and Network Boot
	2.5 Secure Communication and Shared Filesystems
	2.6 Summary

	3 The Construction of a New Cluster
	3.1 Head Node Configuration and Self-Reinstallation
	3.2 PXE Boot and Network Installation Service
	3.2.1 PXE Overview
	3.2.2 Directory Structure
	3.2.3 Configuring dnsmasq
	3.2.4 Configuring httpd
	3.2.5 GRUB Boot Configuration
	3.2.6 Testing and Verification

	3.3 Secure Shell (SSH) Configuration
	3.4 Network File System (NFS) Setup
	3.5 SLURM, MUNGE, and OpenMPI Configuration
	3.5.1 MUNGE Authentication
	3.5.2 SLURM Workload Manager
	3.5.3 OpenMPI Integration
	3.5.4 System Integration Summary

	3.6 Testing and Validation
	3.7 Future Work

	4 Benchmarking and Performance Results
	4.1 Parallelizing the Task
	4.2 Performance and Scaling Results
	4.3 System Stability and Reproducibility

	5 Conclusion
	A Benchmark Program Source Code
	B SLURM Configuration File
	C Headnode Kickstart File
	Bibliography

