BUILDING AN EDUCATIONAL COMPUTE CLUSTER

by

Samuel Howarth

A senior thesis submitted to the faculty of
Brigham Young University - Idaho

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Department of Physics
Brigham Young University - Idaho

December 2025

Copyright (©) 2025 Samuel Howarth

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY - IDAHO

DEPARTMENT APPROVAL

of a senior thesis submitted by

Samuel Howarth

This thesis has been reviewed by the research committee, senior thesis coor-
dinator, and department chair and has been found to be satisfactory.

Date Joe Hill, Advisor

Date David Oliphant, Senior Thesis Coordinator
Date Todd Lines, Committee Member

Date Matt Zachreson, Committee Member

Date Evan Hansen, Chair

ABSTRACT

BUILDING AN EDUCATIONAL COMPUTE CLUSTER

Samuel Howarth
Department of Physics

Bachelor of Science

This thesis examines the historical development of parallel and high-performance
computing, with particular emphasis on the educational and research value of
compute clusters. A Beowulf-style cluster was constructed using Rocky Linux
9.6 to demonstrate practical principles of distributed computation. System
deployment and automation were implemented through GRUB (Grand Uni-
fied Bootloader) menu configurations, PXE (Preboot Execution Environment)
boot services, and Kickstart files, enabling fully unattended installations across
multiple nodes. Configuration of cluster management tools, including SLURM
(Simple Linux Utility for Resource Management), MUNGE (MUNGE Uid ‘N
Gid Emporium), and OpenMPI (Open Message Passing Interface), is doc-
umented in detail. System performance was evaluated using a parallelized
benchmark program that approximates the value of m, demonstrating the

cluster’s computational efficiency, scalability, and reproducibility. The results

viii

highlight the accessibility and pedagogical potential of open-source cluster

computing for high-performance computing education.

ACKNOWLEDGMENTS

This project and thesis would not have been possible without the assistance
and mentorship of Brother Joe Hill, my supervisor and first computational
physics professor.

My heartfelt thanks go out to my own father Evan Howarth and my good
friend Samuel King, who both provided insightful discussions and feedback
in system architecture and project goals. Lastly, I would like to thank my
mother Michelle and sister Ellen for the emotional support during this project
and throughout my university career.

I cannot express enough gratitude to each one of you. Thank you.

Contents

Table of Contents

List of Figures

1

Background and History of Parallel and High-Performance Comput-

ing

1.1 The Beginning of Digital Computing
1.2 Distributed and Cluster Computing
1.3 Applications of Cluster Computing in Academics

Cluster Software Foundations

2.1 Linux in High-Performance Computing
2.2 Job Scheduling and Resource Management
2.3 Parallel Programming with MPI
2.4 Automated Deployment and Network Boot
2.5 Secure Communication and Shared Filesystems
2.6 SUMMATY

The Construction of a New Cluster

3.1 Head Node Configuration and Self-Reinstallation

3.2 PXE Boot and Network Installation Service
321 PXE Overview
3.2.2 Directory Structureo
3.2.3 Configuring dnsmasq
3.2.4 Configuring httpd
3.2.5 GRUB Boot Configuration
3.2.6 Testing and Verification

3.3 Secure Shell (SSH) Configuration

3.4 Network File System (NFS) Setup

3.5 SLURM, MUNGE, and OpenMPI Configuration
3.5.1 MUNGE Authentication
3.5.2 SLURM Workload Manager
3.5.3 OpenMPI Integration

x1

xi

xiii

xii CONTENTS

3.5.4 System Integration Summary 23

3.6 Testing and Validation 23
3.7 Future Worko 24

4 Benchmarking and Performance Results 25
4.1 Parallelizing the Task 27
4.2 Performance and Scaling Results 28
4.3 System Stability and Reproducibility 30

5 Conclusion 33
A Benchmark Program Source Code 35
B SLURM Configuration File 39
C Headnode Kickstart File 41

Bibliography 47

List of Figures

2.1

4.1

4.2

4.3

Cluster architecture showing network topology, storage layout with
NFS mounts, and service roles., 12

1

Midpoint-rule approximation of dz using subintervals of width

o 1+ 22

Measured execution time as a function of the number of cores used.
The curve demonstrates strong scaling for small process counts, with
increasing communication overhead at higher core counts. The dashed
line represents an ideal compute time with no delays from communication. 29
Measured versus ideal speedup. Ideal linear scaling is represented by
the dashed line, while the measured curve shows realistic performance
limited by inter-process communication and synchronization. 30

xiil

Chapter 1

Background and History of Parallel

and High-Performance Computing

Modern high-performance computing systems are the result of decades of archi-
tectural, technological, and conceptual evolution. Understanding how contempo-
rary cluster-based systems emerged requires examining the historical constraints that
shaped early computing, as well as the successive innovations that enabled paral-
lelism at increasing scales. This chapter situates the cluster constructed for this
project within that broader historical context, tracing the development of comput-
ing from early serial machines to vector processors, massively parallel systems, and
ultimately to commodity-based clusters. By reviewing this progression, the chapter
establishes the technical and conceptual foundations necessary for understanding the
design choices and software architecture discussed in later chapters.

Parallel computing allows multiple processing units to work concurrently on parts
of a problem, offering substantial increases in speed and scalability [?]. These ideas
underpin the modern field of high-performance computing (HPC), which today sup-

ports advances in physics, chemistry, climate modeling, and artificial intelligence [?].

2 Chapter 1 Background and History of Parallel and High-Performance Computing

This chapter provides a historical overview of how computing evolved from serial
machines to massively parallel systems, culminating in the development of accessible

cluster-based computing for education and research [7].

1.1 The Beginning of Digital Computing

Since the earliest days of electronic computation, scientists and engineers have sought
faster and more capable computing systems [1]. Traditional serial computers execute
one instruction at a time, limiting the rate at which complex calculations can be
performed [1]. As physical limits to processor clock speeds were approached in the
early 2000s, improvements in raw performance slowed dramatically—a trend often
described as the end of Dennard scaling and the slowdown of Moore’s Law [1]. In
response to these limitations, system designers increasingly turned toward architec-
tures capable of performing many operations simultaneously, giving rise to the field
of parallel computing [2].

Parallel computing allows multiple processing units to work concurrently on parts
of a problem, offering substantial increases in performance and scalability [2,3]. These
ideas underpin the modern field of high-performance computing (HPC), which today
supports advances across a wide range of scientific disciplines [4]. This chapter pro-
vides a historical overview of how computing evolved from serial machines to mas-
sively parallel systems, culminating in the development of accessible cluster-based
computing for education and research [5,6].

The first generation of electronic computers, such as the ENIAC (1945) and UNI-
VAC T (1951), were serial machines capable of executing only one instruction at a
time, reflecting the technological constraints of early electronic hardware [1]. While

revolutionary for their time, these systems were limited by their sequential architec-

1.1 The Beginning of Digital Computing 3

ture and by the physical constraints of early electronic components.

In the 1960s, researchers began exploring methods to increase computational
throughput through simultaneous operations. One of the earliest large-scale attempts
at parallel computing was the ILLIAC IV project, which employed a Single Instruc-
tion, Multiple Data (SIMD) architecture to apply the same operation to many data
elements in parallel [7]. Around the same time, advances in processor architecture
led to the development of vector machines, which achieved performance gains by
operating on entire vectors of data rather than individual scalar values [2].

In 1966, Michael J. Flynn introduced a taxonomy for computer architectures based
on the number of concurrent instruction and data streams: Single Instruction, Sin-
gle Data (SISD), Single Instruction, Multiple Data (SIMD), Multiple Instruction,
Single Data (MISD), and Multiple Instruction, Multiple Data (MIMD) [7]. Flynn’s
taxonomy remains a foundational framework for describing and categorizing parallel
computing systems [1].

By the 1980s and 1990s, high-performance computing was dominated by large,
specialized supercomputers designed for scientific and engineering applications [2].
Vector supercomputers extended earlier architectural concepts with multiple pipelines
and shared-memory parallelism, enabling significant gains in sustained performance.
During this period, researchers also pursued massively parallel processing (MPP)
systems composed of many processors communicating through message passing, an
approach that would later influence cluster-based computing models [2].

These developments laid the conceptual and architectural groundwork for modern
cluster computing, in which commodity hardware and standardized software tools are

used to construct scalable parallel systems [5].

4 Chapter 1 Background and History of Parallel and High-Performance Computing

1.2 Distributed and Cluster Computing

The 1990s saw the emergence of a transformative idea: rather than relying on spe-
cialized supercomputers, parallel computing could be achieved using networks of in-
expensive, commodity hardware. This concept was realized through the development
of Beowulf clusters, pioneered at NASA’s Goddard Space Flight Center in 1994 [5].
A Beowulf cluster consisted of standard personal computers connected via Ethernet
and running open-source software, typically Linux.

The Beowulf approach democratized access to high-performance computing, al-
lowing universities, small research groups, and even individuals to assemble parallel
systems at low cost. Around the same time, the standardization of the Message Pass-
ing Interface (MPI) in 1994 provided a portable and efficient means of inter-process
communication, enabling programs to scale across distributed memory systems [3].

Open-source software became the backbone of modern cluster computing. Tools
such as GCC (GNU Compiler Collection), MPICH (Message Passing Interface Chameleon),
and later OpenMPI (Open Message Passing Interface), combined with Linux-based
job schedulers like PBS (Portable Batch System) and SLURM (Simple Linux Util-
ity for Resource Management), created an ecosystem that replicated many of the
capabilities of large supercomputers using modest resources. Educational projects
such as BYOC (“Build Your Own Cluster”) exemplified this approach in teaching
environments [8,9].

The early 2000s marked a shift from specialized supercomputers toward parallelism
at all scales. Processor manufacturers began integrating multiple cores onto single
chips, making parallel computing a standard feature of consumer hardware. In 2006,
NVIDIA introduced CUDA (Compute Unified Device Architecture), which enabled

general-purpose programming of graphics processing units (GPUs), bringing massive

1.3 Applications of Cluster Computing in Academics 5

parallelism to scientific and engineering applications [10].

Contemporary high-performance systems combine CPUs, GPUs, and other accel-
erators in heterogeneous architectures. The achievement of petascale computing in
2008 with the Roadrunner system at Los Alamos National Laboratory, and exascale
performance in 2022 with Frontier at Oak Ridge National Laboratory, represent mile-
stones in computational capability [4]. These systems are complemented by the rise
of cloud-based HPC services, allowing users to provision virtual supercomputers on
demand.

Energy efficiency and scalability have become critical considerations in modern
HPC design. The Green500 list now ranks supercomputers by performance per watt,
reflecting the growing emphasis on sustainable computation. Open frameworks such

as MPI and OpenMP continue to evolve to support increasingly complex hardware.

1.3 Applications of Cluster Computing in Academics

While national laboratories pursue exascale performance, smaller-scale clusters re-
main vital for education and research. University clusters allow students to develop
practical skills in distributed computing, system administration, and scientific pro-
gramming. By working with physical hardware and real schedulers, students gain
an understanding of parallel job submission, process communication, and resource
management that cannot be replicated in purely theoretical coursework.
Educational clusters such as Hope College’s BYOC project and similar efforts
using Raspberry Pi or x86 nodes demonstrate the accessibility of modern HPC tech-
niques [6]. The compute cluster constructed for this thesis project follows in that
tradition, providing an affordable, reproducible, and instructive system that bridges

the gap between classroom theory and real-world computation.

6 Chapter 1 Background and History of Parallel and High-Performance Computing

Thus, the evolution of computing from serial to parallel systems reflects the contin-
ual pursuit of higher performance and scalability. From the earliest vector processors
to modern heterogeneous clusters, the field of high-performance computing has ad-
vanced through a combination of hardware innovation and open collaboration. The
rise of cluster computing—built on commodity hardware and open-source software—
has made supercomputing accessible to researchers and students alike.

The following chapter introduces the theoretical principles and software paradigms
that enable parallel systems to function effectively, forming the conceptual foundation

for the design and implementation of the cluster built in this study.

Chapter 2

Cluster Software Foundations

High-performance computing (HPC) systems rely on collections of interconnected
computers, known as clusters, to perform large-scale numerical or data-intensive com-
putations efficiently. A cluster typically consists of multiple compute nodes managed
by a central head node or controller. Each node runs a compatible operating sys-
tem, shares access to a common file system, and communicates over a high-speed
network. Software layers such as job schedulers and message passing libraries pro-
vide the framework that enables distributed tasks to be coordinated and executed in
parallel.

This chapter provides an overview of the major software components that make
up a modern Beowulf-style compute cluster. The focus is on the theoretical and
architectural foundations that informed the implementation described in Chapter 3.
The technologies discussed include the Linux operating system, workload managers
such as SLURM, the Message Passing Interface (MPI), and supporting systems for

automated deployment and node communication.

8 Chapter 2 Cluster Software Foundations

2.1 Linux in High-Performance Computing

Since the early 2000s, Linux has become the dominant operating system for high-
performance and supercomputing environments. The reasons for its widespread adop-
tion include open-source availability, modularity, scalability, and robust support for
scientific and engineering workloads. Linux distributions can be customized to provide
lightweight installations that maximize computational performance while minimizing
overhead.

Rocky Linux, a downstream derivative of Red Hat Enterprise Linux (RHEL), is
particularly suited to cluster environments because it maintains binary compatibility
with enterprise-grade packages while remaining freely available. The stability and
long-term support of Rocky Linux make it an ideal foundation for systems where re-
producibility and consistency are essential. Chapter 3 details the specific installation

and configuration of Rocky Linux 9.6 used in this project.

2.2 Job Scheduling and Resource Management

In a shared computing environment, user tasks must be efficiently allocated among
available hardware resources. Job schedulers and resource managers automate this
process, ensuring that computational workloads are executed fairly, efficiently, and
without conflict. The scheduler maintains queues of user-submitted jobs, tracks node
availability, and assigns resources according to policies such as fair-share scheduling,
priority weighting, or backfilling.

The Simple Linux Utility for Resource Management (SLURM) is one
of the most widely used open-source workload managers in HPC. SLURM operates
through a distributed set of daemons: a central controller (slurmctld) that manages

job queues and resource states, and node daemons (slurmd) that execute assigned

2.3 Parallel Programming with MPI 9

tasks. Users interact with the system through commands such as sbatch, srun, and
squeue. SLURM’s design supports scalability from small research clusters to some

of the largest supercomputers in operation.

2.3 Parallel Programming with MPI

While a scheduler coordinates when jobs are run, the Message Passing Interface
(MPI) defines how programs communicate across distributed memory systems. MPI
provides standardized functions that allow independent processes to exchange data
through explicit message passing. The model enables scalable parallelism by dividing
computational tasks among multiple processors, each performing calculations on a
subset of data.

Key MPI concepts include ranks (unique identifiers for each process), communi-
cators (groups of processes that can communicate), and collective operations such as
broadcast, scatter, and reduce. The flexibility of MPI allows developers to parallelize
algorithms in both domain-decomposition and task-decomposition paradigms.

This project utilizes the OpenMPI implementation of the MPI standard, chosen
for its portability, performance, and seamless integration with SLURM. OpenMPI
supports a range of interconnects and can automatically detect and optimize commu-
nication paths across nodes. Chapter 4 presents benchmark results that demonstrate

the scaling performance of the implemented system using OpenMPI.

2.4 Automated Deployment and Network Boot

Efficient cluster deployment requires the ability to install and configure many com-

pute nodes consistently. Manual installation on each node is impractical and prone

10 Chapter 2 Cluster Software Foundations

to human error. Instead, automated installation mechanisms are used to provision
operating systems and software over the network.

The Preboot Execution Environment (PXE) allows nodes to boot directly
from a network interface without local storage media. When configured, a node re-
quests boot instructions from a server via DHCP and downloads a bootloader and
kernel image via TF'TP or HTTP. PXE is commonly used in conjunction with Kick-
start files, which contain predefined installation parameters such as partition layouts,
package selections, and post-installation scripts. Together, PXE and Kickstart enable
fully unattended and reproducible node provisioning.

This approach greatly simplifies maintenance and scalability. As discussed in
Chapter 3, the head node in this project hosts PXE and HTTP services that automate
installation of all compute nodes, ensuring a consistent software environment across

the cluster.

2.5 Secure Communication and Shared Filesystems

Communication between nodes in a cluster must be both secure and efficient. The Se-
cure Shell (SSH) protocol provides encrypted remote login and command execution
capabilities, enabling passwordless communication through key-based authentication.
SSH is also used by job schedulers to launch and monitor processes across nodes.

In addition to secure communication, a shared filesystem is essential for simplifying
data access and management. The Network File System (NNFS) protocol allows
directories on the head node to be exported and mounted by compute nodes as if
they were part of the local filesystem. This shared storage model enables all nodes

to access the same executables, datasets, and output files without redundant copies.

2.6 Summary 11

2.6 Summary

This chapter has introduced the foundational software and networking technologies
that underpin the construction and operation of a Beowulf-style compute cluster. The
concepts of Linux-based system architecture, workload scheduling, parallel computa-
tion, automated deployment, and secure communication form the basis of scalable
high-performance computing systems.

The next chapter, Chapter 3, describes the practical implementation of these
technologies in the development of a new compute cluster. Each configuration step,
from PXE network setup to SLURM and OpenMPI integration, is documented in

detail to provide a reproducible framework for future educational and research use.

12 Chapter 2 Cluster Software Foundations

Head / Control Plane

Head Node
/admin }

(PXE + Control)

slurmctld — slurmd I

thru the switch -
Head services:

dnsmasq (DHCP/TFTP/DNS)
httpd (Kickstart/ISO)
NFS server

slurmcetld

Network Fabric

Topology:

Network Switch Star topology

1 GbE ports, full-duplex Dedicated links
(non-blocking switch)

Compute Node 1 Compute Node 2 Compute Node 3
6 CPU cores 6 CPU cores 6 CPU cores

Compute services:
slurmd

NFS mount: /admin

Figure 2.1 Cluster architecture showing network topology, storage layout
with NFS mounts, and service roles.

Chapter 3

The Construction of a New Cluster

This chapter serves as a more detailed record of the steps taken to build and config-
ure the compute cluster used in this project, code is included in the appendix. The
goal was not only to create a functional high-performance computing environment,
but also to document the process in sufficient detail that the cluster could be re-
constructed or expanded by future students. The major steps included making the
head node self-reinstallable, setting up network boot (PXE) services, configuring se-
cure communication and shared storage, and deploying the workload manager and

message-passing tools necessary for parallel computation.

3.1 Head Node Configuration and Self-Reinstallation

The first step in building the cluster was preparing the head node to serve as both a
management server and a PXE boot host for future compute nodes. The head node
was installed with Rocky Linux 9.6, using a primary NVMe disk (nvme0) partitioned
into two parts: one for the operating system and a second partition mounted at

/admin. The /admin directory was used to store ISO images, kickstart configuration

13

14 Chapter 3 The Construction of a New Cluster

files, and related resources necessary for automated reinstallations.

A key design goal was to make the head node itself self-reinstallable. By config-
uring a local PXE service and maintaining a kickstart file tailored for the head node,
the system could be fully reinstalled from its own resources. This design ensures that
the entire cluster can be rebuilt from scratch without external installation media,
simplifying maintenance and reproducibility.

Starting with a USB drive loaded with the unpackaged ISO of the desired Linux
distribution, Rocky 9.6 in this case, insert the USB and complete a first install of
the new operating system on the head node. This first installation will generate a
blank kickstart file at /root/anaconda-ks.cfg. Inside this kickstart file we can add
instructions to add the /admin partition and its file structure. Save this kickstart in
a safe location, I used a second USB thumb drive to ensure the kickstart would not
be overwritten. Once this is done we can perform a new installation of the operating
system, using the newly modified kickstart to enact this new partitioning plan. This
is the Second installation.

After the second installation is completed, the ISO files and the kickstart can
be copied into the /admin partition at /admin/iso/rockyLinux/Rocky-9.6/ and
/admin/ks/headnode/ks.cfg respectively. Additionally, now a new separate kick-
start file containing instructions to set up a compute node can be created at

/admin/ks/computenode/ks.cfg.

This new kickstart does not need any specific instructions for drive partitioning,
and won’t require any modification at this time.

To make the head node self-reinstallable, a custom GRUB (Grand Unified Boot-
loader) menu entry was created that launches the Rocky Linux installer directly from
the local ISO and kickstart files stored under /admin. This approach allows the

system to be rebuilt automatically without external media.

3.2 PXFE Boot and Network Installation Service 15

The GRUB configuration file is typically found at /etc/grub.d/40_custom. Open

and add the following code to /etc/grub.d/40_custom to add a new boot entry.

menuentry ’Reinstall Head Node (Automated)’ {
set root=(hd0,1)
linuxefi /admin/rocky9/images/pxeboot/vmlinuz \
inst.stage2=file:///admin/rocky9 \
inst.ks=file:///admin/kickstarts/headnode.ks

initrdefi /admin/rocky9/images/pxeboot/initrd.img

The configuration points the installer to the kernel (vmlinuz) and initial ramdisk
(initrd.img) from the ISO, and specifies the kickstart file and repository path. Save

the GRUB configuration with the following command:
sudo grub2-mkconfig -o /boot/efi/EFI/rocky/grub.cfg

Now when the headnode reboots this option will appear as one of the boot options,
thus allowing the computer to return to the conditions specified by the kickstart

whenever necessary.

3.2 PXE Boot and Network Installation Service

A critical component of the cluster design was establishing a PXE (Preboot Execution
Environment) service that allowed both the head node and all future compute nodes
to install Rocky Linux automatically over the network. This setup ensures that the
cluster can be rebuilt or expanded quickly without requiring manual intervention or

physical installation media.

16 Chapter 3 The Construction of a New Cluster

3.2.1 PXE Overview

PXE booting enables computers to load a boot image directly from the network

instead of a local disk. The process requires three main services:
1. DHCP to assign IP addresses and tell clients where to find the bootloader.
2. TFTP to provide the bootloader and kernel /initrd images.
3. HTTP (or NFS) to serve the installation files and kickstart configuration.

For this cluster, these services were consolidated on the head node using a minimal
dnsmasq configuration for DHCP and TFTP, and httpd (Apache) for hosting the

installation files.

3.2.2 Directory Structure

All PXE-related files were stored on the head node’s /admin partition, organized as

follows:
/admin/
|-- rocky9/ # ISO contents copied here
| -— kickstarts/ # Kickstart files (e.g., headnode.ks, compute.ks)

The Rocky Linux ISO was mounted and its contents copied into /admin/rocky9/,
allowing the installer to fetch required packages over HT'TP. The kickstart files were

placed in /admin/kickstarts/ so they could be accessed via links such as:
http://headnode/admin/kickstarts/compute.ks

The EFT bootloader files and GRUB configuration used for PXE booting were
stored in a separate directory at /root/tftpboot, which served as the TFTP root.

In this project UEFI GRUB

3.2 PXFE Boot and Network Installation Service 17

3.2.3 Configuring dnsmasq

A minimal dnsmasq configuration provided both DHCP and TFTP functionality. The

configuration file /etc/dnsmasq. conf included only the essential directives:

interface=enpls0
dhcp-range=192.168.1.100,192.168.1.200,12h
dhcp-boot=grubx64.efi

enable-tftp

tftp-root=/root/tftpboot

log—-queries

This setup assigns IP addresses to PXE clients on the private cluster network and
points them to the EFI bootloader served from the TFTP root.

The bootloader files (grubx64.efi, shimx64.efi, and grub.cfg) were placed in
/root/tftpboot/. These were copied from the Rocky Linux ISO’s EFI directory,

ensuring compatibility with UEFI-based compute nodes.

3.2.4 Configuring httpd

The httpd web server was installed and configured to serve files from /admin. In

/etc/httpd/conf.d/admin. conf, the directory was exposed via:

Alias /admin/ "/admin/"

<Directory "/admin/">
Options Indexes FollowSymLinks
AllowOverride None
Require all granted

</Directory>

18 Chapter 3 The Construction of a New Cluster

After restarting httpd, both the ISO contents and kickstart files became accessible

over the internal network.

3.2.5 GRUB Boot Configuration

For UEFT clients, the PXE boot process used GRUB EFT instead of the legacy PX-
ELINUX loader. The configuration file /root/tftpboot/grub.cfg defined the menu

entries and installation parameters:

menuentry ’Rocky Linux 9.6 Automated Install’ {
linuxefi /rocky9/images/pxeboot/vmlinuz \
inst.ks=http://headnode/admin/kickstarts/compute.ks \
inst.repo=http://headnode/admin/rocky9/

initrdefi /rocky9/images/pxeboot/initrd.img

When a compute node booted over the network, GRUB loaded the kernel and
initrd files from the TFTP server and then retrieved the installation and configuration

data over HTTP.

3.2.6 Testing and Verification

After enabling and starting both dnsmasq and httpd, a test PXE boot was performed
using the head node itself. The system successfully booted via the network, fetched
its kickstart file, and reinstalled automatically, confirming that the PXE service was
correctly configured. Once validated, the same setup was used to provision additional
compute nodes, allowing fully unattended installations consistent with the head node

environment.

3.3 Secure Shell (SSH) Configuration 19

3.3 Secure Shell (SSH) Configuration

After node installation, passwordless SSH was configured to allow secure and friction-
less communication between the head node and compute nodes. SSH key pairs were
generated on the head node and distributed to all nodes, allowing commands and file
transfers to occur without manual password entry. This step is essential for cluster
management tasks and for SLURM job scheduling, which relies on seamless remote

execution.

3.4 Network File System (NFS) Setup

A shared file system was established using the Network File System (NFS) protocol
to provide each node with access to common files such as software packages, user
directories, and administrative scripts. Centralizing these resources on the head node
simplifies management and ensures consistency across the cluster.

The head node exported the /admin directory, which contained installation re-
sources, and a dedicated /shared directory for user data. The export configuration

file /etc/exports included the following lines:

/admin *(ro,sync,no_root_squash)

/shared *(rw,sync,no_root_squash)

These entries make both directories accessible to all nodes on the internal net-
work. The sync option ensures that file writes are committed to disk before the
server replies, providing data consistency. The no_root_squash directive allows ad-
ministrative scripts executed by root on compute nodes to retain their privileges when
accessing shared directories, which is important for automated provisioning.

After updating the exports file, the NFS service was enabled and started:

20 Chapter 3 The Construction of a New Cluster

sudo systemctl enable nfs-server
sudo systemctl start nfs-server

exportfs -rav

Each compute node mounted the shared directories automatically at boot time.

The following entries were added to /etc/fstab:

headnode:/admin /mnt/admin nfs defaults 0 O

headnode:/shared /shared nfs defaults 0 O

With NF'S configured, all nodes in the cluster shared a common software and data
environment. This arrangement allowed the system administrator to install software,
distribute scripts, and store results in a unified workspace, facilitating collaboration

and maintenance.

3.5 SLURM, MUNGE, and OpenMPI Configura-
tion

With the hardware and basic networking infrastructure in place, the next major
step in constructing the cluster was configuring the software stack responsible for
authentication, workload management, and parallel execution. This stack consisted of
MUNGE for node authentication, SLURM for job scheduling and resource allocation,

and OpenMPI for distributed parallel computation.

3.5.1 MUNGE Authentication

MUNGE (MUNGE Uid "N’ Gid Emporium) was used to provide lightweight, credential-

based authentication between cluster nodes. Rather than relying on centralized user

3.5 SLURM, MUNGE, and OpenMPI Configuration 21

credentials or external directory services, MUNGE uses symmetric key authentication
to verify that messages originate from trusted nodes within the cluster.

A single MUNGE key was generated on the head node and securely distributed
to all compute nodes. This key was stored at /etc/munge/munge.key with strict
ownership and permission settings, ensuring that only the munge user could access it.
Once the key was synchronized across all nodes, the MUNGE daemon was enabled
and started system-wide.

This approach ensured that SLURM daemons could authenticate with one another
while keeping the authentication mechanism simple, reproducible, and well-suited to

a small instructional cluster.

3.5.2 SLURM Workload Manager

SLURM served as the cluster’s primary workload manager. It was responsible for
job submission, scheduling, node allocation, and resource tracking. The head node
was designated as the SLURM controller, running the slurmctld daemon, while each
compute node ran a slurmd daemon responsible for executing assigned tasks.

The core SLURM configuration was defined in the slurm.conf file, a complete
version of which is included in Appendix B. Key configuration concepts are summa-

rized below.

Control Machine

The ControlMachine parameter in slurm.conf specifies the hostname of the node
responsible for managing the cluster. In this deployment, the head node was desig-
nated as the control machine. All scheduling decisions, job state tracking, and node

management operations originated from this node.

22 Chapter 3 The Construction of a New Cluster

Node Definitions

Each compute node was explicitly defined in the configuration file using a NodeName
entry. These definitions included the node hostname, number of CPU cores, and
current operational state. Explicit node definitions allowed SLURM to accurately
track available resources and assign jobs accordingly.

Nodes were grouped logically using naming patterns, enabling the configuration

to scale cleanly if additional compute nodes were added in the future.

Partition Definitions

SLURM partitions were used to organize available compute resources into schedulable
groups. For this cluster, a single default partition was defined that included all
compute nodes. This partition served as the primary execution environment for user
jobs.

Partition-level configuration allowed limits to be placed on runtime, node usage,

and access control, providing flexibility for future expansion or instructional use cases.

3.5.3 OpenMPI Integration

OpenMPI provided support for parallel execution using the Message Passing Interface
(MPI) standard. SLURM’s native integration with MPI allowed users to launch dis-
tributed programs using either srun or mpirun, with SLURM automatically handling
process placement and resource allocation.

This integration simplified the user workflow by eliminating the need for manual
hostfiles and ensuring that MPI processes were launched only on nodes allocated by

the scheduler.

3.6 'Testing and Validation 23

3.5.4 System Integration Summary

Together, MUNGE, SLURM, and OpenMPI formed the functional core of the clus-
ter. MUNGE ensured secure inter-node authentication, SLURM provided structured
access to shared compute resources, and OpenMPI enabled scalable parallel execu-
tion. This software stack allowed multiple users to submit and execute parallel jobs

efficiently while maintaining centralized control and reproducibility.

3.6 Testing and Validation

After completing the PXE, SSH, and NFS configurations, a validation process was
performed to ensure that all cluster components operated as intended. The following

criteria were tested:

1. PXE Boot Functionality: Each node was tested to confirm successful net-

work boot and automated installation.

2. Network Connectivity: All nodes were verified to have IP connectivity and

name resolution within the cluster network.

3. Passwordless SSH: Secure, key-based authentication was confirmed between

the head node and compute nodes.

4. NFS Mounts: Shared directories were confirmed to mount correctly and re-

main accessible after reboots.

5. SLURM Integration: A basic MPI job was submitted through sbatch and

completed successfully across multiple nodes.

The successful completion of these tests demonstrated that the cluster could re-

liably deploy, communicate, and execute distributed computations. The configura-

24

Chapter 3 The Construction of a New Cluster

tion achieved the project’s goal of providing a reproducible and educational high-

performance computing platform.

3.7

Future Work

While the current configuration achieves a functional and scalable compute cluster,

several extensions and improvements are possible:

Monitoring and Logging: Deploying a monitoring suite such as Ganglia,
Grafana, or Prometheus would enable real-time performance tracking and re-

source visualization.

RAID Storage: Refinement of the networked drives that the nodes read from
and write to with a RAID setup will protect the cluster from data loss in the

event of a failure in the storage drives

Containerized Workflows: Adding support for container runtimes such as
Singularity or Apptainer would allow users to run isolated, reproducible software

environments.

Job Benchmarking and Optimization: Continued performance testing
could identify bottlenecks and guide optimizations in scheduling and I/O han-

dling.

Together, these enhancements would strengthen the cluster’s usability, scalabil-

ity, and long-term maintainability, paving the way for future student research and

teaching applications.

Chapter 4

Benchmarking and Performance

Results

To evaluate the performance and scalability of the compute cluster constructed for this
project, a series of benchmark tests were conducted using distributed-memory paral-
lel computation. The tests were designed to assess both computational throughput
and communication efficiency when executing parallel workloads under the SLURM
workload manager.

The benchmark program computed the numerical value of 7 using a parallel im-
plementation of the midpoint integration method. This approach provided a simple
but effective test of the cluster’s performance, as it involved minimal communication
between processes and allowed for controlled scaling across multiple nodes.

All parallel programs were compiled using mpicc and executed through SLURM
batch scripts using srun or mpirun. Each job recorded its total runtime, number of
cores utilized, and the computed value of 7 to a shared output file. The full source
code is included in Appendix A.

The benchmark evaluated the integral

25

26 Chapter 4 Benchmarking and Performance Results

L4

——d 4.1
L Trm (4.1)

m =

using the midpoint rule for numerical integration. The integrand was defined

as

(4.2)

0,1 17"

1
dx using subintervals

Figure 4.1 Midpoint-rule approximation of
of width h.

0o 1+a2

and the integral was approximated by dividing the interval [0,1] into N = 10°

equal subintervals of width A = 1/N. The midpoint rule gives

. h#Sf((H;) h) (4.3)

4.1 Parallelizing the Task 27

This method is well suited to parallelization because each term in the summation

can be computed independently.

4.1 Parallelizing the Task

The computation was parallelized using the Message Passing Interface (MPI). The
total range of integration was divided evenly among p MPI processes. Process r,

where r € [0, p — 1], computed the local partial sum

(r+1)N -

S, — ZN f<<z 4 ;) h) , (4.4)

and the global sum was recovered through a reduction operation:

p—1
T~hY S, (4.5)
r=0

Each process computed its local contribution independently and only commu-
nicated during the final reduction stage. The MPI Reduce() function was used to
combine the results, with the root process (rank 0) writing the final value of 7, along
with timing information, to an output file.

The elapsed time for each run was measured using the MPI Wtime() function,
providing accurate wall-clock timing for the entire computation.

All benchmarks were executed under the SLURM workload manager. Batch
scripts defined the resource allocation parameters (nodes, tasks per node, and wall
time limits) and executed the MPI program using srun. Typical configurations in-
cluded 1, 2, 4, 5, and 6 cores, distributed across one or more nodes. Do note that
because MPI Reduce() is only called once at the end, this benchmark is not a good

measure of network communication speeds which can be a significant bottleneck for

28 Chapter 4 Benchmarking and Performance Results

more complex parallel computing tasks, where in order to account for boundary con-
ditions MPI_Reduce () must be called after every iteration.

Each job produced an output file containing:
e Number of cores used

e Computed value of 7

e Total execution time (in seconds)

An example of a minimal SLURM submission script is shown below:

#!/bin/bash

#SBATCH --job-name=pi_benchmark
#SBATCH --output=pi_Jj.out
#SBATCH --ntasks=8

#SBATCH --time=00:10:00

#SBATCH --partition=standard

module load openmpi

srun ./pi_mpi

Listing 4.1 Example SLURM batch script for benchmarking runs.

4.2 Performance and Scaling Results

The total runtime 7'(p) was recorded for varying numbers of cores. The speedup
S(p) and parallel efficiency E(p) were calculated as
(1) S(p)

S(p) = o) E(p) = o (4.6)

4.2 Performance and Scaling Results 29

An ideal speedup would follow S(p) = p, corresponding to perfect linear scaling.
In practice, deviations from this ideal behavior arise due to communication overhead,

memory access latency, and synchronization costs between MPI processes.

Compute Time vs Number of Cores
T T T T T T T T T T T T T T T

300 - .
250 |- R

200 F R

i 1 Best Fit
150 .

i ® 1 Ideal Scaling
100 - .

Time Taken (s)

50 |- .

0;\ L L L | L L L | L L L | L L L | L L L | L L L \;
0 2 4 6 8 10 12

Number of Cores Used

Figure 4.2 Measured execution time as a function of the number of cores
used. The curve demonstrates strong scaling for small process counts, with
increasing communication overhead at higher core counts. The dashed line
represents an ideal compute time with no delays from communication.

The total runtime 7'(p) was recorded for varying numbers of cores. The speedup
S(p) and parallel efficiency E(p) were calculated as

Sp) = 7= E(p) = —— (4.7)

An ideal speedup would follow S(p) = p, corresponding to perfect linear scaling.
In practice, deviations from this ideal behavior arise due to communication overhead,
memory access latency, and synchronization costs between MPI processes.

The results show that the cluster achieves near-linear speedup for up to several

cores, confirming efficient CPU utilization and minimal network bottlenecks. Beyond

30 Chapter 4 Benchmarking and Performance Results

Measured vs Ideal Speedup

Measured speedup
Best-fit trend
Ideal speedup (S(N)=N)

[e>
— T

opTTuup

~
—

0 = -
| L L | L L L | L L L | L L L | L L L | L L L |

0 2 4 6 8 10 12

Figure 4.3 Measured versus ideal speedup. Ideal linear scaling is represented
by the dashed line, while the measured curve shows realistic performance
limited by inter-process communication and synchronization.

that range, speedup begins to level off as the cost of inter-process communication

increases relative to computation time.

4.3 System Stability and Reproducibility

Each benchmark test was repeated multiple times to verify consistency. SLURM
logs confirmed correct participation of all nodes and no job failures. The system
demonstrated stable operation across repeated tests, validating the reliability of both
the PXE-based deployment and the SLURM configuration.

The benchmarking results confirmed that the cluster supports efficient distributed-
memory parallel computation using MPI. The midpoint integration benchmark pro-
vided a simple yet effective measure of performance, showing strong scaling across
multiple cores and nodes. These tests also verified the proper configuration of SLURM,

MPI communication, and file output systems.

4.3 System Stability and Reproducibility 31

The complete C source code used in this benchmark, along with sample SLURM

batch scripts, is included in Appendix A.

32

Chapter 4 Benchmarking and Performance Results

Chapter 5

Conclusion

The primary goal of this project was to design, build, and validate a functional
high-performance computing (HPC) cluster using recycled hardware, modern Linux
tooling, and automated deployment techniques. By leveraging Rocky Linux 9.6 as
the operating system and PXE boot for node provisioning, the cluster was configured
to allow rapid rebuilds and easy expansion. The head node was designed to be self-
reinstallable using local ISO and kickstart files, ensuring that both maintenance and
system recovery can be performed with minimal manual intervention.

The configuration of SLURM as the job scheduler, MUNGE for authentication,
and OpenMPI for parallel computation demonstrated that the cluster could effectively
manage multi-node, multi-core workloads. Benchmarking with a simple numerical
integration program showed near-linear scaling for moderate core counts, confirming
that both the hardware and software environment were capable of supporting dis-
tributed computation. Deviations from ideal performance at higher core counts were
consistent with expected communication overhead and limitations inherent in paral-
lel processing, providing a realistic demonstration of HPC concepts for educational

purposes.

33

34 Chapter 5 Conclusion

Several key takeaways emerged from this project. First, careful planning of the
head node and shared administration directories simplified the deployment and ex-
pansion of compute nodes. Centralizing ISO images, kickstart files, and PXE boot
configurations allowed for reproducible system builds, reducing errors and manual ef-
fort. Second, integrating industry-standard tools such as SLURM and OpenMPI pro-
vided a practical environment for testing parallel programs, while exposing students
to real-world HPC software paradigms. Finally, leveraging inexpensive or recycled
hardware showed that functional and scalable compute clusters can be built without
prohibitive cost, highlighting the accessibility of high-performance computing in an
educational setting.

Beyond technical accomplishments, this project underscored the importance of
documentation, maintainability, and modular design. Detailed records of system
setup, configuration, and benchmarking ensure that future students and researchers
can reproduce or expand the cluster with confidence. The combination of automated
provisioning, networked file systems, and secure communication provides a robust
framework that supports both learning and research, reinforcing the educational value
of hands-on HPC experience. Ultimately, the cluster constructed in this project rep-
resents not only a computational resource but also a teaching tool that embodies the
principles of scalability, automation, and reproducibility in high-performance com-

puting.

Appendix A

Benchmark Program Source Code

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <time.h>

double f(double x) {

return 4.0 / (1.0 + x*x);

int main(int argc, char* argv[]) {
int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

35

36

Chapter A Benchmark Program Source Code

const long long N = 1000000000; // Number of intervals (1
billion)
double h = 1.0 / (double)N;

double local_sum = 0.0, pi = 0.0;

// Split work across ranks

long long start (N / size) * rank;

long long end = (rank == size-1) ? N : start + (N / size

)

double t0 = MPI_Wtime () ;

for (long long i = start; i < end; i++) {

double x = h * ((double)i + 0.5);

local_sum += f(x);

local_sum *= h;

// Reduce all local sums to rank O

MPI_Reduce (&local_sum, &pi, 1, MPI_DOUBLE, MPI_SUM, O,

MPI_COMM_WORLD) ;

double t1 = MPI_Wtime () ;

// Only rank O writes results

if (rank == 0) {

37

FILE *fp = fopen("/home/mpiuser/pi_result.txt", "w");
if (fp == NULL) {

fprintf (stderr, "Error,opening, file, for writing\n"

)3

MPI_Abort (MPI_COMM_WORLD, 1);
}
fprintf (fp, "Number of,cores,used: %d\n", size);
fprintf (fp, "Computed,valuejof pi: %.15f\n", pi);
fprintf (fp, "Time,taken,(s): %.6f\n", t1 - t0);
fclose (fp);
printf ("Computation, ,complete. Results,saved to,/home/

mpiuser/pi_result.txt\n");

MPI_Finalize () ;

return O;

Listing A.1 MPI benchmark program used for numerical estimation of .

38

Chapter A Benchmark Program Source Code

Appendix B

SLURM Configuration File

39

40

Chapter B SLURM Configuration File

Appendix C

Headnode Kickstart File

Generated by Anaconda 34.25.5.17
Generated by pykickstart v3.32

#verston=RHEL9

Graphical install s optional

#graphical

%addon com_redhat_kdump --enable --reserve-mb=’auto’

%end

Keyboard layout and system language
keyboard --xlayouts=’us’

lang en_US.UTF-8

Package group
%packages

Q@core

41

42 Chapter C Headnode Kickstart File

@~ graphical -server-environment

cluster management and job scheduling
munge

munge-1libs

munge -devel

slurm

slurm-slurmd

slurm-slurmctld

MPI packages
openmpi

openmpi -devel

#networking and time synchroization
nfs-utils

chrony

PXE services
dnsmasq
tftp-server

httpd

other useful utilities
vim
wget

curl

43

bash-completion

%end

Run the Setup Agent on first boot

firstboot —--enable

PRE: Dynamically set up /admin partition depending on
whether "ADMIN" partition already exzists

hpre

#1/bin/sh

admin_dev=$(blkid -L ADMIN)

if [-n "$admin_dev"]; then
partname=$ (basename "$admin_dev")
echo "part,/admin,,--fstype=xfs_ --noformat —-onpart=%{
partname}" > /tmp/admin-ks-partition.ks
else
echo "part,/admin, ,--fstype=xfs_ --size=20480,--ondisk=

nvmeOnl, --label=ADMIN" > /tmp/admin-ks-partition.ks

%end

Disk and partition layout
ignoredisk --only-use=nvmeOnl
clearpart --all --initlabel --disklabel=gpt --drives=nvmeOnl

bootloader --boot-drive=nvmeOni

44 Chapter C Headnode Kickstart File

part /boot/efi --fstype=efi --size=600 --fsoptions="umask
=0077 ,shortname=winnt" --ondisk=nvmeOni

part /boot -—-fstype=xfs --size=1024 --ondisk=nvmeOnl

%include /tmp/admin-ks-partition.ks

part / -—fstype=xfs --s1ize=81920 --grow --ondisk=

nvmeOnl

network --bootproto=static --ip=192.168.100.1 --netmask
=255.255.255.0 --gateway=192.168.100.1 --device=enol --

activate --hostname=headnode.localdomain

Timezone and Toot password
timezone America/New_York --utc

rootpw --plaintext TempP1234!

immediately after install we want to run all the scripts to
setup our installed packages

%post --log=/root/kickstart-post.log

enabled and start chronyd
systemctl enable chronyd

systemctl start chronyd

Munge setup
if [' -f /etc/munge/munge.key 1; then

/usr/sbin/create -munge -key

45

fi

chown munge:munge /etc/munge/munge.key
chmod 400 /etc/munge/munge.key
systemctl emnable munge

systemctl start munge

Slurm serwvices

systemctl enable slurmctld
systemctl start slurmctld
systemctl enable slurmd

systemctl start slurmd
enable and start dnsmasq for DHCP/TFTP
systemctl enable dnsmasq

systemctl start dnsmasq

systemctl enable tftp.socket

systemctl start tftp.socket

systemctl enable httpd

systemctl start httpd

adjust firewall rules for all services

firewall -cmd --permanent --add-service=munge
firewall -cmd --permanent --add-service=slurmctld
firewall -cmd --permanent --add-service=slurmd

firewall -cmd --permanent --add-service=dnsmasq

46 Chapter C Headnode Kickstart File

firewall -cmd --permanent --add-service=tftp
firewall -cmd --permanent --add-service=http
firewall-cmd --reload

%end

POST (mon-chroot): Add GRUB menu entry for PXE reinstall
%post --nochroot
cat << ’EQOF’ >> /mnt/sysimage/boot/grub2/custom.cfg
menuentry ’Install Rocky_ 9.6, ,from,,/Admin’> {
linuxefi /images/pxeboot/vmlinuz inst.repo=http
://192.168.100.1/admin/iso/rockyLinux/Rocky9.6/ inst.ks
=http://192.168.100.1/admin/ks/headnode/ks.cfg

initrdefi /images/pxeboot/initrd.img

EQF

%end

Listing C.1 Kickstart file used for the headnode in this project.

Bibliography

1]

David A. Patterson and John L. Hennessy. Computer Organization and Design:

The Hardware/Software Interface. Morgan Kaufmann, 5th edition, 2017.

Jack Dongarra, W. Orser, M. Rosing, and R. Smith. A history of high perfor-

mance computers. Communications of the ACM, 33(9):47-58, 1990.

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Par-
allel Programming with the Message Passing Interface. MIT Press, 3rd edition,
2014.

Jack Dongarra, Pete Beckman, Omar Aaziz, et al. Report on the achievement of
the first exascale supercomputer. Technical report, U.S. Department of Energy,

Exascale Computing Project, 2022.

Thomas Sterling, Daniel Savarese, John E. Becker, John E. Dorband, Udaya
Ranawake, and Charles V. Packer. Beowulf: A parallel workstation for scien-
tific computation. In Proceedings of the International Conference on Parallel

Processing, pages 11-14, 1995.

Brian Barrett, Jason Cope, Aaron Fahey, Jared Kienzle, and John Muehlbauer.
Raspberry pi clusters for teaching parallel computing. Computing in Science &

Engineering, 21(5):82-88, 2019.

47

48 BIBLIOGRAPHY

[7] Michael J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901-1909, 1966.

[8] Nathan R. Vance, Michael L. Poublon, and William F. Polik. Byoc: Build your

own cluster, part i — design. Faculty Publications, (1439), 2016. Paper 1439.

[9] Nathan R. Vance, Michael L. Poublon, and William F. Polik. Byoc: Build your
own cluster, part ii — installation. Faculty Publications, (1438), 2016. Paper
1438.

[10] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Proces-

sors: A Hands-on Approach. Morgan Kaufmann, 4th edition, 2021.

	Title Page
	Copyright
	Department Approval
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Background and History of Parallel and High-Performance Computing
	1.1 The Beginning of Digital Computing
	1.2 Distributed and Cluster Computing
	1.3 Applications of Cluster Computing in Academics

	2 Cluster Software Foundations
	2.1 Linux in High-Performance Computing
	2.2 Job Scheduling and Resource Management
	2.3 Parallel Programming with MPI
	2.4 Automated Deployment and Network Boot
	2.5 Secure Communication and Shared Filesystems
	2.6 Summary

	3 The Construction of a New Cluster
	3.1 Head Node Configuration and Self-Reinstallation
	3.2 PXE Boot and Network Installation Service
	3.2.1 PXE Overview
	3.2.2 Directory Structure
	3.2.3 Configuring dnsmasq
	3.2.4 Configuring httpd
	3.2.5 GRUB Boot Configuration
	3.2.6 Testing and Verification

	3.3 Secure Shell (SSH) Configuration
	3.4 Network File System (NFS) Setup
	3.5 SLURM, MUNGE, and OpenMPI Configuration
	3.5.1 MUNGE Authentication
	3.5.2 SLURM Workload Manager
	3.5.3 OpenMPI Integration
	3.5.4 System Integration Summary

	3.6 Testing and Validation
	3.7 Future Work

	4 Benchmarking and Performance Results
	4.1 Parallelizing the Task
	4.2 Performance and Scaling Results
	4.3 System Stability and Reproducibility

	5 Conclusion
	A Benchmark Program Source Code
	B SLURM Configuration File
	C Headnode Kickstart File
	Bibliography

