
Cadence® Virtual Component Co-Design
Architecture Evaluation Guide

Product Version 2.1
March 2001

 1998-2001 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this
document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission statement,
this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or
distributed in any way, without prior written permission from Cadence. This statement grants you permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s customer
in accordance with, a written agreement between Cadence and its customer. Except as may be explicitly set
forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties
as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does
not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any
liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

VCC Architecture Evaluation Guide

Contents
Preface .. 7

Related Documents . 7
Typographic and Syntax Conventions . 8

1
Overview . 9

Integration-Based Design Flow . 11
Capturing Behavior . 12
Running a Functional Simulation . 13
Capturing Architecture . 15
Mapping Behavior to Architecture . 16
Running a Performance Simulation . 18
Refining Mapping Diagrams . 19

Exploration . 20
Derivative Design . 20
Hardware/Software Partitioning Changes . 20
“What If” Scenario . 21

2
Performance Models . 23

Performance Models of Architecture Components . 23
Typical Architecture Services . 28

Additional Architecture Services . 32
Behavior Performance on Software Architectures . 32
Execution Delays . 32
Delays Based on the Processor . 33
Delays Based on Memory Accesses . 34
Performance Modeling Styles . 36

DSL Performance Model . 36
Annotated C Performance Model . 39
March 2001 3 Product Version 2.1

VCC Architecture Evaluation Guide
Annotated C++ Performance Model . 40
Scheduling Shared Resources . 43

Performance Impact of Scheduling . 44
Scheduler Services . 46
Single-Threaded Scheduling Model . 47
RTOS Scheduler Services . 48
RTOS Models . 50
Nested Schedulers . 51

3
Communication Between Behaviors . 55

Bus Arbitration . 55
Arbitration Models . 57

Communication Patterns . 60
Performance Model of a Pattern . 61
Additional Services . 64
Reusability of Patterns . 65
Pattern Support for Fanouts . 65
Addressing . 66

Behavior Memories . 70
Using Behavior Memories . 70
Mapping the Memory Instance . 72

DMA Modeling . 75
Cache Modeling . 80
Behavior Timers . 88

Place the Timer Instance . 90
Declare the Timer Reference . 90
Associating a Timer Reference with a Timer Instance . 90
Interacting with the Timer from within Your Model . 91
Mapping the Timer . 91

4
Analyzing Behavior Delay . 97

Creating the Mapping Diagram . 98
Mapping Configurations . 98
March 2001 4 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing the Behavior Delay of a Hardware/Software Partition 99
General Mapping Guidelines . 100
Using the Performance Viewlist . 100
Binding Performance Models Explicitly . 101
Mapping Parameters . 101

Analyzing Bus Traffic . 102
Refining Communication Patterns . 106

Pattern Categories . 107
Pattern Defaults . 108
Mapping Parameters . 109
Performance Analysis of Patterns . 109

Analyzing Memory Access . 109
Instruction and Data Fetch Analysis . 110
Performance Analysis of Behavior Memories . 110
Cache Analysis . 111

Analyzing Timer Accesses . 117

5
Performance Evaluation . 119

Simulating the Mapping Diagram . 119
Setting Up the Simulation . 119
Initializing and Running the Simulation . 121
Debugging Simulation Problems . 121

Exploring the Mapping Diagram . 123
Exporting Parameters . 123
Sweeping Parameters . 126

Analyzing Simulation Results . 127
Using Model Viewports . 127
Simulation Messages . 131
Comparing Functional and Performance Simulation Results 131
Analyzing Testbench Results . 132
Analyzing Table Charts . 132
Analyzing Gantt Charts . 132
March 2001 5 Product Version 2.1

VCC Architecture Evaluation Guide
6
Mapping Refinement . 139

Protocol Down Converter Refinement . 139
Creating a Refinement Model . 141
Instantiating and Mapping a Refinement . 144
Simulating and Analyzing a Refinement . 145
Specifying a Sub-Configuration for a Refinement . 146

A
Pattern Descriptions. 147

Software-to-Hardware Communication . 147
Hardware-to-Hardware Communication . 151
Hardware-to-Software Communication . 152
Software-to-Software Communication . 162
March 2001 6 Product Version 2.1

VCC Architecture Evaluation Guide
Preface

This manual describes how to customize output from the Cadence® Virtual Component Co-
Design (VCC) environment for use with a software debugger or a co-verification tool. You
customize output from the VCC environment by writing extensions to the Links to
Implementation feature in VCC.

This manual shows how to extend Links to Implementation so that it generates

■ Probes for software debuggers that the VCC environment does not already support

■ Startup and configuration files for co-verification tools that the VCC environment does
not already support

This manual is for design flow engineers who integrate third-party tools into the VCC design
flow at the customer site for use by system designers and virtual component providers.

The preface discusses

■ Related Documents on page 7

■ Typographic and Syntax Conventions on page 8

Related Documents

The following documents give you more information about the VCC environment and related
applications.

For information about… Refer to…

How to accomplish specific tasks in the
VCC environment and what each menu
command does

Help Topics: Cadence Virtual Component
Co-Design (to open VCC Help, start the Create
editor and choose the Help > VCC Help Topics
menu command)

Modeling behavior, architecture, and
implementation; strategies for capturing
and verifying behavior

VCC Modeling Guide
March 2001 7 Product Version 2.1

VCC Architecture Evaluation Guide
Preface
Typographic and Syntax Conventions

This manual uses the following typographic and syntax conventions.

■ Text that you type, such as commands, filenames, and values for dialog box fields,
appears in Courier type.

Example: Type create to start the Create editor from a UNIX window.

■ Variables appear in Courier italic type.

Example: lib .cell :view defines the library, cell, and view for each model in the
Project Folder.

■ User interface elements, such as field names, button names, menus, menu commands,
and items in clickable list boxes, appear in Helvetica italic type.

Example: From the Edit menu, choose the Data Types command.

■ Menu commands use the > character to indicate menu levels.

Example: Choose the Edit > Data Types command.

Caution

A Caution informs you about possible damage to equipment, data, or
software.

Important

An Important emphasizes valuable information.

The design libraries in the
Project Folder

VCC Library Reference

Exporting hardware and software for co-
verification; importing cycle-accurate
simulation results

VCC Links to Implementation Design Guide

Customizing VCC output for use with a
debugger or a co-verifier

VCC Links to Implementation Flow
Customization Guide

Creating SPW models, which you can
import into the VCC environment

Signal Processing WorkSystem (SPW)
documentation library

For information about… Refer to…
March 2001 8 Product Version 2.1

VCC Architecture Evaluation Guide
1
Overview

The Cadence® Virtual Component Co-Design (VCC) environment lets you integrate
intellectual property models to simulate, evaluate, and select appropriate virtual components
for digital communication, automotive, and multimedia system design.

The VCC environment differentiates between a behavior model, which determines what the
system is supposed to do, and an architecture model, which determines how the system is
supposed to perform.

Using the VCC environment, you can explore independent dimensions of behavior and
architecture to reach optimal design performance within your given constraints, as shown in
the following figure. The gray area of the graph represents the area where performance and
cost constraints are met.

Virtual component model developers or vendors can use the VCC environment to accomplish
the following objectives:

■ To provide models of single-chip or chip-set systems for evaluation and selection by
prospective customers

■ To integrate virtual component models as building blocks into higher level models

Similarly, system designers and architects can use the VCC environment to accomplish
related objectives:

Software only
implementation

Performance

Cost

Hardware only
implementation

Performance
constraint

Cost
constraint
March 2001 9 Product Version 2.1

VCC Architecture Evaluation Guide
Overview
■ To evaluate performance and select models that meet product requirements

■ To integrate internally developed or purchased models of hardware and software blocks
from Signal Processing WorkSystem (SPW) and other design tools

■ To verify that a given behavior can be performed on an existing architecture and still meet
performance requirements

■ To explore the feasibility of new behaviors on various architectures
March 2001 10 Product Version 2.1

VCC Architecture Evaluation Guide
Overview
Integration-Based Design Flow

The VCC design flow is illustrated in the following figure.

To begin the process, you capture the desired behavior and verify that the system works
through functional simulation. Separately, you capture a potential system architecture using
performance models of hardware and software components.

Next, you map the verified behavior diagram to the system architecture diagram. From this
mapping diagram, you run a performance simulation to evaluate the performance of the
behaviors on the selected architecture. You refine, remap, and reverify until your design
meets your performance requirements.

VCC EnvironmentCapture behavior

Behavior models Architecture models

Capture architecture

functional simulation

Map behavior to
architecture

Refine architecture

performance simulation

Run

Run

Coverify hardware and software

Synthesize hardware Compile software
March 2001 11 Product Version 2.1

VCC Architecture Evaluation Guide
Overview
If a desired architecture is too expensive to implement, you can adjust constraints or
functionality to accomplish your goal or declare the behavior unimplementable under the
current performance constraints.

Capturing Behavior

Behavior models represent functional system blocks and testbenches. When capturing the
behavior of a system design, you specify behavior as high-level behavior models without
implying an eventual architecture implementation.

In the VCC environment, a behavior primitive is mapped to a single architecture primitive. It
cannot be partitioned across several architecture models. If you want to explore mapping
parts of a behavior on separate architecture models, you should compose it as a hierarchy of
models. This approach lets you map all the segments on to one architecture model or
individual segments on to separate architecture models.

You use the Behavior Diagram Editor to create your behavior diagram. For a new behavior
diagram, you instantiate symbols that represent behavior models and set model properties to
define model and port characteristics. You connect the input and output ports of the
behavioral models to create a system diagram, as shown in the following figure.
March 2001 12 Product Version 2.1

VCC Architecture Evaluation Guide
Overview
Behavior Modeling Tools

You can use various tools to create libraries of behavior models depending on the role of the
models in your diagram.

To import new or existing models, you can use the following tools:

■ Use SPW to specify DSP-oriented applications and other synchronous data flow models.

■ Use the Telelogic SDT tool to specify graphical SDL models of behavior. This tool is a
standard in the telecommunications industry.

To create models in VCC, you can use the following tools:

■ Use the STD Editor to specify graphically communication refinement and similar co-
design finite state machine (CFSM) models.

■ Use the text editor in the VCC environment to specify textual SDL models for
communication refinements and for CFSM models.

■ Use a C software development tool or a text editor in the VCC environment to specify
Whitebox C models for embedded software.

■ Use a C++ software development tool or a text editor in the VCC environment to specify
C++ models for modeling general functional blocks.

Running a Functional Simulation

You should verify the integrity of your behavior design through functional simulation before
evaluating the performance of the system. Turnaround time in functional simulation is shorter
than in a performance simulation because execution of the blocks is instantaneous.
Functional simulation, therefore, is preferable for integrating and debugging behavior models.

In functional simulation, you

■ Create an analysis session for your behavior diagram.

■ Set design parameters and sweep parameters.

■ Place probes and display objects in your design so you can check results.
March 2001 13 Product Version 2.1

VCC Architecture Evaluation Guide
Overview
■ Use the Visualize tool to postprocess simulation results.

Top-level parameters
and values

Behavior diagram
March 2001 14 Product Version 2.1

VCC Architecture Evaluation Guide
Overview
Capturing Architecture

In the VCC environment, potential architectures consist of the models shown in the following
figure.

Initially, to capture your architecture diagram, you use the Architecture Diagram Editor. This
tool lets you quickly enter a relaxed architecture that represents a target implementation
architecture. In a relaxed architecture diagram, you do not need to define every port and
signal—you need only define the basic topology.

In an architecture diagram, you instantiate symbols representing various architecture models,
such as a bus, RTOS, and processor. You add ports and connect the models to appropriate

RTOSBus

Architecture Models

Cache

Interrupt ControllerDMA
ROM

RAM
Bus Bridge

Processor

ASIC
March 2001 15 Product Version 2.1

VCC Architecture Evaluation Guide
Overview
buses, as shown in the following figure. Architecture properties define performance and
implementation characteristics.

A performance model must be specified for each architecture primitive model. For example,
a processor is characterized by delays of executing instructions.

Mapping Behavior to Architecture

Mapping makes the connection between behavior models in a behavior diagram and
architecture models in an architecture diagram.
March 2001 16 Product Version 2.1

VCC Architecture Evaluation Guide
Overview
The Mapping Diagram Editor lets you map the behavior to the relaxed architecture, as shown
in the following figure.

Mapping defines the hardware and software partitions. For example, behaviors mapped to a
scheduler associated with a processor are implemented in software.

Mapping also identifies a performance model that provides the basis for assessing realistic
delays incurred if the behavior is run on the mapped architecture.

Architecture models represent performance models that can be used to analyze an
implementation of a behavior. Performance models can be precharacterized from an actual
implementation or can be user-defined to characterize expected performance based on
projected budgets or constraints.
March 2001 17 Product Version 2.1

VCC Architecture Evaluation Guide
Overview
Running a Performance Simulation

The performance simulator evaluates the performance of the mapped diagram. Performance
simulation can

■ Identify missed events

■ Estimate system-level performance

■ Provide data on the usage of processors, buses, and other shared devices

By inserting probes in your mapping diagram, you can collect and graphically display data to
assess and compare system function.
March 2001 18 Product Version 2.1

VCC Architecture Evaluation Guide
Overview
The following figure shows the performance parameters and their settings for a simulation
run.

You can remap behaviors to different architecture models, then rerun the simulation to
analyze the effects on performance. You can sweep simulation parameter values to compare
the performance using different characteristics.

Refining Mapping Diagrams

You can refine your mapped diagram to include more design decisions by

■ Analyzing behavior delay
March 2001 19 Product Version 2.1

VCC Architecture Evaluation Guide
Overview
■ Analyzing bus traffic

■ Refining communication patterns

■ Analyzing memory access

In addition, behavior refinements can include refining communication, specifying refined
control protocols, or changing abstract data types to base data types that more closely
represent the actual implementation.

Exploration

You can use the VCC environment to explore various possibilities for new product or feature
design. The following sections offer several ways to use the features of the VCC environment
depending on the goals of your exploration.

Derivative Design

In the VCC environment, you can explore the effects of adding new functionality to existing
products.

■ Create behavior models for additional features to enhance your original product design.

■ Using the mapped diagram from your original product, create multiple mapping diagrams
that combine some or all of the new features.

■ Simulate and analyze the results.

■ Experiment with remapping and resimulating, adding and dropping new behavior
models, to obtain combinations that maintain the performance of the original product.

Hardware/Software Partitioning Changes

To explore cost-effectiveness and high performance, you can evaluate the benefits and
drawbacks of partitioning various behavior models in hardware or software.

■ Use the Save As option to save your current mapping diagram.

■ Change the mapping of various behavior models to assess the benefits or drawbacks in
implementing certain behaviors in hardware versus software.

■ Sweep parameters in all mapping diagrams to compare statistics about each method.
March 2001 20 Product Version 2.1

VCC Architecture Evaluation Guide
Overview
“What If” Scenario

The VCC environment can be used effectively to explore potential architecture design
combinations. In this type of exploration, you create architecture models and vary
performance property values until a design meets your budget or constraint requirements.
Once you have determined a suitable architecture, you can search vendor libraries to find
virtual component models that meet your model specifications.

■ Create and debug a mapping diagram that instantiates your behavior diagram and an
architecture diagram that seems appropriate for your needs.

■ Export architecture model performance properties that affect your budget or constraints.

■ Simulate, analyze, and debug results of the first design’s performance.

■ Use the Save As option to adjust your initial architecture diagram, using a naming
convention that emphasizes the differences in your diagrams. Create, debug, and
simulate a mapping diagram for each modified architecture.

■ Adjust simulation parameter values and resimulate.

■ Sweep parameters in several of your mapping diagrams to analyze multiple options.

■ Use Visualize to display multiple windows for statistics and Gantt chart comparisons.
March 2001 21 Product Version 2.1

VCC Architecture Evaluation Guide
Overview
March 2001 22 Product Version 2.1

VCC Architecture Evaluation Guide
2
Performance Models

Because the performance of a behavior model is dependent on the architecture, the behavior
performance model is described in terms of the services supported by the architecture. For
example, the performance model of a behavior model mapped to an RTOS does not know
the execution time for the behavior model—the execution time is dependent on the clock
speed of the processor and the instruction set supported by the processor. The behavior
model only contains the number of instructions to be executed. The architecture service
contains the information about the clock speed and instruction set of the processor.

As another example, a behavior model accesses memory for instruction and data fetching.
The performance impact of a memory access is dependent on the load of the bus, the transfer
rate on the bus, and the memory latency. To model this, VCC supports behavior models that
reference services supported by the architecture.

In the first example, the behavior model specifies the number and type of instructions in the
behavior model, whereas the performance model of the processor models the cost of an
instruction. In the second example, the performance model of the behavior specifies the type
of memory access (read/write) and the data size of the request. The performance model of
the processor converts the single read/write request into the appropriate number of bus
requests, the bus adapter requests ownership of the bus, and the bus model accounts for the
performance impact of arbitration. Finally, the appropriate RAM or ROM accounts for the
read/write latency. Thus the performance impact is distributed to each of the architecture
elements involved in the memory access.

Performance Models of Architecture Components

The performance model of an architecture component is defined by a set of architecture
services. These services can be associated with the component itself or with a port on the
component. Each service models the performance of a particular function supported by that
architecture component. For example, an RTOS might define the following services:

■ Scheduler service for arbitrating multiple tasks running on the same CPU

■ Standard C library service for modeling standard C functions like memset, memcpy,
and sizeOf
March 2001 23 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
■ SWInterrupts service for modeling software interrupts

■ SWMutexes service for modeling mutual exclusion

Each of these services supports a number of functions. The implementation of a particular
function specifies the performance impact of executing that function. For example, the
standard C library service models the performance impact of executing the memset,
memcpy, and sizeOf functions on a particular RTOS. These services do not implement the
functions, rather, they specify the performance impact of calling these functions. In this
example, the memcpy function blocks for the amount of time needed to write the data to
memory—it does not make a copy of the data.

In VCC, the set of functions supported by a service is modeled as a Blackbox service
declaration using a C++ header file. The implementation of these functions is modeled as a
blackbox service definition using C++. VCC supplies a set of service declarations in the
VCC_ServiceDeclarations library and a set of matching service definitions in the
VCC_ArchitectureServices library. In the case of the RTOS example, the
VCC_ServiceDeclarations.LibCDeclaration:blk_serviceDecl declares the memset,
memcpy, and sizeOf functions, and the
VCC_ArchitectureServices.StandardCLibrary:blk_service provides the performance
impact of each these functions.

The following is the blk_serviceDecl.h file from the
VCC_ServiceDeclarations.LibCDeclaration:blk_serviceDecl cellview:

#ifndef VCC_ServiceDeclarations_LibCDeclaration_blk_serviceDecl_blk_protoface_h
#define VCC_ServiceDeclarations_LibCDeclaration_blk_serviceDecl_blk_protoface_h

#include <sim/ModelSupport.h>

template<class portType>
class simulateDLLExport VCC_ServiceDeclarations_LibCDeclaration_blk_serviceDecl :
public serviceDeclaration
{
protected:

VCC_ServiceDeclarations_LibCDeclaration_blk_serviceDecl(const ModuleProto&
a, InstanceInit& b)
 : serviceDeclaration(a,b) {};
VCC_ServiceDeclarations_LibCDeclaration_blk_serviceDecl()
 : serviceDeclaration() {};

public:
virtual vccAddress* memcpy(vccAddress* s1, const vccAddress* s2, size_t n,

vccInstance*) = 0;
virtual vccAddress* memset(vccAddress* s, int c, size_t n, vccInstance*) = 0;
virtual size_t sizeOf(const typeDefinition& type,vccInstance*) = 0;
virtual size_t sizeOf(const typeObject& data,vccInstance*) = 0;

void* preCast() {return this;};
};

#endif
March 2001 24 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
The following is the blk_service.cpp file from the
VCC_ArchitectureServices.StandardCLibrary:blk_service cellview:

#include "blk_service.h"

#include <sim/ModelSupport.h>

static const
VCC_ServiceDeclarations_MemoryAccessDeclaration_blk_serviceDecl<typeObject>::

readWrite rwWrite =
VCC_ServiceDeclarations_MemoryAccessDeclaration_blk_serviceDecl<typeObject>::

write;
static const
VCC_ServiceDeclarations_MemoryAccessDeclaration_blk_serviceDecl<typeObject>::

readWrite rwRead =
VCC_ServiceDeclarations_MemoryAccessDeclaration_blk_serviceDecl<typeObject>::

read;

CPP_MODEL_IMPLEMENTATION::CPP_MODEL_IMPLEMENTATION(const ModuleProto &proto,
InstanceInit &inst)

: CPP_MODEL_INTERFACE(proto, inst), initialized_(false)
{
}

void CPP_MODEL_IMPLEMENTATION::Initialize(const char* name, vccInstance* block)
{
}

void CPP_MODEL_IMPLEMENTATION::Init()
{

if (initialized_)
return;

initialized_ = true;

bytesPerWord_ = typeInfo.getSizeOfWord();
}

/***
Name: memcpy
Description: Copies n bytes from memory address s2 to s1. This

implementation assumes that addresses lies on memory
word boundaries. No actual data is designed to be
stored or read. Memory transactions are generated for
performance reasons only.

Return: Always returns s1.
***/
vccAddress* CPP_MODEL_IMPLEMENTATION::memcpy(vccAddress* to, const vccAddress*
from, size_t n, vccInstance* inst)
{

MS_DEBUG(2) InfoOut << Start << "memcpy()" << End;

if (n == 0)
return to;

Init();

unsigned reqTrans = n / bytesPerWord_;
reqTrans = ((reqTrans==0) ? 1 : reqTrans);
unsigned remTrans = reqTrans;
March 2001 25 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
theBegin:
if (remTrans == 0) goto theEnd;
{

if (from)
memAccess.reference(*from, bytesPerWord_, rwRead,inst,true);

else {
// tbd

}
if (to)

memAccess.reference(*to, bytesPerWord_, rwWrite,inst,true);
else {

// tbd
}

}

remTrans--;
goto theBegin;

theEnd:
return to;

}

/***
Name: memset
Description: Sets the first n bytes of memory at address s to the value

of c (converted to an unsigned char). Memory transactions
are generated for performance reasons only.

Return: Always returns s;
***/
vccAddress* CPP_MODEL_IMPLEMENTATION::memset(vccAddress* s, int c, size_t n,

vccInstance* inst)
{

MS_DEBUG(2) InfoOut << Start << "memset()" << End;

if (n == 0)
return s;

Init();

vccAddress* to = s;

unsigned remTrans = n;

theBegin:
if (remTrans == 0) goto theEnd;
{

if (to)
memAccess.reference(*to, bytesPerWord_, rwWrite,inst,true);

else {
// tdb

}
}

remTrans--;
goto theBegin;

theEnd:
return s;

}

March 2001 26 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
size_t CPP_MODEL_IMPLEMENTATION::sizeOf(const typeDefinition& type,
vccInstance* srcBehInst)

{
return typeInfo.getTypeSize(&type);

}

size_t CPP_MODEL_IMPLEMENTATION::sizeOf(const typeObject& data,
vccInstance* srcBehInst)

{
return typeInfo.getTypeSize(data.typeOf());

}

In VCC, the service declarations are associated with the symbol view of the architecture
component, and the service definitions for each service declaration are specified in the
performance view of an architecture component. For example, a symbol of the RTOS
declares that the RTOS supports the
VCC_ServicesDeclaration.LibCDeclaration:blk_service. Then, in the performance view
of the RTOS, the performance impact of these functions is defined in the
VCC_ArchitectureServices.StandardCLibrary:blk_service.

The separation of the declaration and the definition makes it easier for you to change the level
of accuracy for the performance analysis. You can also choose a different performance type
(such as power versus area) by binding a different performance model of the architecture
component.

If the performance impact of a service depends on its interaction with another service (either
on a different architecture component or its own), the service declares that it uses another
service. Specifically it uses another service declaration because it calls a specific C++
function with specific arguments. The service makes a direct call to that function using the
use handle name, function name, and function arguments.

For example, the memcpy function uses the memoryAccess service on the CPU to specify
the delay for writing the data into memory. The model of the standard C library service calls
the reference function from the memAccess service:

memAccess.reference(*from, bytesPerWord_, rwWrite, inst, true);

Where memAccess is the handle declared for the memoryAccessDeclaration in the use
clause and reference is declared as a function that takes five arguments in the
VCC_ServiceDeclarations.memoryAccessDeclaration:blk_serviceDecl cellview. In
the architecture diagram, the CPU assigned by the RTOS must support the
memoryAccessDeclaration for this call to be successful. Distributing the performance
models among the architecture components provides the ability to explore different
architectures quickly. You can easily change architecture components when the components
support the same service declarations.
March 2001 27 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
The service definitions can be parameterized. These parameters can be set inside the
performance model of the architecture component, or they can be exported to the
architecture instance in the architecture diagram. Parameters make the service definition
reusable in different architecture components and architecture diagrams.

Typical Architecture Services

Service declarations and service definitions can be associated with any architecture
resource, and you can also design your own services. The purpose of this section is to
provide information about a typical set of services that are applicable to each of the
architecture resources.

Architecture Resource Applicable Services

Processor Delays

CPUInstructionCost

CPUMemoryAccess

CPUInterruptController

CPUSingleStack

CPUTypeSize

FCFSBusAdapter

RTOS SWInterrupts

StandardCLibrary

SWMutexes

RoundRobinScheduler

SWTimers

ASIC AsynchronousDelays

StaticPriorityHWScheduler

FCFSSlaveAdapter

FCFSBusAdapter

InterruptBusAdapter

Memory

ASICTypeSize
March 2001 28 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
Processor Models

A performance model for a processor should account for the cost of executing instructions.
This facilitates writing behavior performance models that are specified in terms of
instructions. The processor should also model the performance impact of hardware
scheduling and interrupt requests. In addition, the processor should model memory requests
(including stack management) and interaction with the bus. These services in turn are
dependent on services supported by the connected data bus and the interrupt controller.

Predefined ASIC Models

Predefined ASICs are modeled by virtual component providers or library developers by
creating an architecture model representing the actual hardware device, one or more
behavior models representing the behaviors associated with it, and at least one performance
model to support delays, memory access, and bus adapters.

For example, an ASIC provider might supply a library with an MPEG decoder model that
consists of an ASIC architecture model, a behavior model providing the algorithm, and one
or more performance models.

Using this example, you would instantiate the asic1 symbol in your architecture diagram and
choose asic as your performance model. The asic performance model provides services

■ For scheduling behaviors mapped to it

Data Bus FCFSArbiter

Interrupt Bus InterruptBus

Memory FCFSSlaveAdapter

Memory

Architecture Resource Applicable Services

vendor_lib

mpeg_decoder
symbol

blk_cpp

delay

asic1
asic
symbol
March 2001 29 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
■ For interactions with the databus and interrupt bus

In your behavior diagram, you would instantiate the mpeg_decoder symbol and make sure
blk_cpp contains the behavior that models the functionality of an MPEG decoder. In your
mapping diagram, you would map these two models to each other.

The behavior performance model, delay , describes the performance impact of running the
decoder on the asic. You do not need to choose the behavior performance view because the
performance model is preset by the BehaviorPerfViewName property in the ASIC model
properties.

Refer to your vendor library documentation to determine any link parameter values required
by the device.

Custom ASIC Models

A custom ASIC acts as a placeholder for a hardware model that is in development. You need
to create an architecture model for the ASIC, one or more behavior models that model the
ASIC function, and performance models that characterize its expected performance based
on projected budgets or constraints. Refer to the VCC Modeling Guide for details about
creating a custom ASIC and a DSL performance model.

You are prompted for exported parameters for every performance model. You need to set only
those parameters that are used in the configuration you have selected.

A scheduler model must be included internally as part of the model. If the ASIC includes a
scheduler that is parameterized, you might need to assign link parameters.

Data Bus

The performance model for a data bus should model the arbitration for bus ownership.
Examples of different bus arbiters are first-come-first served, time-sliced, and broadcast. The
arbitration of the bus is typically requested by the bus adapter service on the bus master
(such as the processor).

Once the adapter has ownership of the bus, the adapter starts transferring the data to the
slave adapter (such as to the memory or ASIC). If the bus transaction is addressed to a
particular slave, the appropriate slave adapter must first be identified by looking up the
March 2001 30 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
symbolic address in the bus registry. Therefore, each slave adapter must register itself with
the bus registry.

Interrupt Bus

The performance model for an interrupt bus should model the contention caused by multiple
simultaneous interrupt requests. The interrupt bus should decide the winner and send the
request to the interrupt handler (on the processor).

The processor supports an interrupt controller service, which manages the interrupt service
routines (ISRs). The ISRs are registered with the interrupt controller. When the interrupt
controller gets an interrupt request, the appropriate ISR is scheduled based on the interrupt
priority and the currently running task.

Memory

The performance model of a memory should model the read/write latency. A slaveAdapter
service on the port models the interaction with the bus. The memory typically does not
manage the actual data being read/written— it only models the performance impact of
completing the read or write.

The memory can also be supported by a cache or DMA on the architecture diagram.

Bus Bridge

The performance model of a bus bridge should model the transfer of data from one bus to
another. The bridge typically has a slave adapter on the primary bus and a busAdapter
(master) on the external bus. When a communication is requested from one architecture
component to another, VCC automatically determines the set of buses and bridges needed
to complete the path through the architecture diagram.

Bus Arbiter

CPU

Bus Adapter

ASIC

Slave Adapter
March 2001 31 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
Because bus bridges can support multiple buses, the legal paths through the bridge must be
specified by setting the vccOutputPortName parameter on the port.

Additional Architecture Services

Each architecture component in the architecture diagram supports a set of services.
Additional services might be appropriate based on the communication paths between these
architecture components. For example, a device driver might be useful for the software to
communicate with a particular ASIC. However, that device driver is dependent on the
processor and possibly the RTOS used in the architecture.

VCC lets you add services to an RTOS in the architecture diagram. These services are
defined by a handle name, a reference to a service definition (cellview name), and parameter
values required by the service definition. This service definition can use services provided by
the RTOS or the processor.

Behavior Performance on Software Architectures

In order to analyze the performance of your system on a specific architecture, you need to
specify performance models for each behavior. These performance models can be port
delays with parameterization for data type sizes. This approach might be sufficient for
hardware, but for software, the performance model is also affected by the following:

■ Execution Delays

■ Delays Based on the Processor

■ Delays Based on Memory Accesses

■ Performance Modeling Styles

■ Scheduling Shared Resources

Execution Delays

A functional model executes with discrete event semantics. An execution is called a reaction.
The reaction samples inputs, computes responses, and emits outputs, all in the same instant.

To make a functional model useful for performance simulation, it must be associated with a
temporal model that specifies the execution delays of the reaction. In the VCC environment,
you associate a performance model with the functional model.
March 2001 32 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
To model the performance of a behavior on some target architecture, you need to specify the
instants at which values on input ports are read, the instants at which values on output ports
are posted, and the instant at which the reaction ends.

The performance model can be represented as a wrapper around the block, as shown in the
following figure.

The performance model causes the reaction to take time. If new values arrive on the input
ports faster than the reaction time of the model, events could be lost or missed.

The following figure provides an example of a performance model timeline.

A performance model represents the temporal model of a reaction. The VCC environment
defines three types of performance models: annotated C performance models, annotated
C++ performance models, and delay scripting language (DSL) performance models.

Delays Based on the Processor

The performance of a behavior running on software is affected by the clock speed of the
processor. It is advantageous to parameterize the performance model based on the clock
speed of the processor in the mapped design. You can accomplish this in the VCC

i i

o

p

o

p
B

Output delaysInput delay

Simulated time

Reaction begins

Port i read

Output emitted on port o

Output emitted on port p

Reaction ends
March 2001 33 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
environment by referencing the CPS parameter on the processor from within your
performance model. (For information about the CPS parameter, see the “Architecture
Models” chapter of the VCC Modeling Guide.)

Similarly, the performance of a behavior running on software is affected by the instruction set
supported by the processor. For example, a branch or load instruction on a particular
processor might require cycle counts different from those of another processor. In order to
explore different instruction sets, it is useful to parameterize the performance model based
on the processor chosen in the mapped design. You can accomplish this by referencing the
processor basis associated with the processor. (For information about the processor basis,
see the “Architecture Models” chapter of the VCC Modeling Guide.)

The number of registers on the processor as well as the technique for register allocation also
affects the performance of behaviors running on the processor. It is advantageous for the
performance model of the behavior to account for usage of registers. In the VCC
environment, the annotated C modeling style supports different register allocation techniques
for more accurately modeling this impact. (For information about the annotated C modeling
style, see the “Architecture Models” chapter of the VCC Modeling Guide.)

Delays Based on Memory Accesses

Execution of a behavior on a processor requires memory accesses for instructions and data
that are assigned to specific segments in an architecture memory. The processor must issue
a request to access the memory and transfer the memory segment across the bus. In
addition, there is a performance impact of accessing data from a processor stack. This can
be modeled in the VCC environment by declaring behavior memory segments and mapping
them to architecture memories.

In the performance model, the memory segments are declared by name and size. The size
specification is of type String, which can be parameterized by the size of the instruction. The
following example shows a performance model that has two memory segments:

segmentName = "data" with size = "1024"
segmentName = "text" with size = "OP.i + LD + OP.i + ST + OP.i + IF"

During mapping, these memory segments are collected and presented as a single, uniquely
named list of memory segments per processor. These memory segments are used in the
linker/loader stage when building the software image.

The complete list of memory segments are gathered from

■ Performance views of all behaviors mapped to the RTOS or nested scheduler.

■ Services associated with the memory references and timer references of the behaviors
mapped to the RTOS or nested schedulers.
March 2001 34 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
■ Sender services of patterns associated with the output ports of the behaviors mapped to
the RTOS or nested schedulers.

■ Receiver services associated with the input ports of the behaviors mapped to the RTOS
or nested schedulers.

■ Services supported by the RTOS or any nested scheduler.

■ Instantiate clauses in services. For example, timerTickISR, ISRs for interrupt patterns,
and polltaker behavior.

■ Software explicitly added to the RTOS using the Add Software command in the
Mapping Diagram Editor.

Example

Behavior instance “b1” has the following memory segments:

"data" of size "256"
"d1" of size "256"

Behavior instance “b2” has the following memory segments:

"data" of size "256"
"d2" of size "512"

As a result, the processor has the following linker segments:

"data" (calculated size of 512)
"d1" (calculated size of 256)
"d2" (calculated size of 512)

In this example, the processor linker segment “data” has a calculated size of 512 because the
“data” memory segments from instances “b1” and “b2” are combined.

You map each linker segment to an architecture memory by specifying “Memory Participant”
and “offset”. You also specify the type of the segment, which can be “CODE”, “DATA”,
“STACK”, or “HEAP”.

The VCC software can automatically calculate the “size” field for each processor segment by
adding the sizes of the individual segments of the behaviors mapped to the processor. You
can also override this value. The “size” field is represented by a composite type with a field
for “size” and a field for “Fixed” or “Floating”. If “Fixed,” you specify an integer for the size. If
"Floating," the VCC software gathers the sizes and uses the processBasis file to convert
strings to unsigned.

VCC uses the directMemoryRead pattern to model the communication of the processor to
the specified architecture memory for instruction and data fetches.
March 2001 35 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
Performance Modeling Styles

There are three types of performance models:

■ Delay scripting language (DSL) performance models

■ Annotated C performance models

■ Annotated CPP performance models

DSL Performance Model

The DSL performance model is a method of associating a delay model with a functional
model using the delay scripting language (DSL). A DSL performance model can be used in
the following situations.

■ When the code is not yet fully developed

■ When using a blackbox behavior model in which the code is not accessible

■ When a processor basis file does not exist

■ For hardware

Under certain circumstances, VCC supports backward compatibility for DSL semantics.
There is a DSL parameter that causes a DSL script to be interpreted in a way that is
compatible with previous releases of VCC. The DSL semantics used prior to VCC 2.0 are still
available if you specify the VCC1XMode mode parameter (of type Boolean) on the DSL view
of the model and set the value to True. If you use this setting, make sure the pre-VCC 2.0
compatible services are used by the behavior for all port connections.

DSL primitives can sample inputs, perform delays, and post outputs. The delays can be
constants, or they can be parameterized by the behavior model, the architecture model to
which the behavior is mapped, or the state of a viewport in the behavior model.

The following table describes the semantics of some key DSL primitives.

input (port) Defines the point in the reaction at which the read of the input port
occurs.

output (port) Defines the point in the reaction at which the posting to the output port
occurs.

run () This does not have any effect in VCC 2.0, but as in earlier versions of
VCC, it is a required separator between the uses of the input primitives
and the uses of the output primitives in the script.
March 2001 36 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
Other commands are available in the DSL language. For more information, see the VCC
Modeling Guide.

The following code segment shows a DSL script that models a behavior implemented on a
target architecture.

#pragma "DELAY_MODEL_VERSION" "1.0"
delay_model()
{

/* Wait before reading input. */
delay(‘20e-6’);
/* Now read the input. */
input(inA);
run();
/* Wait before posting outputs. */
delay(‘10e-6’);
/* Post the output */
output(outX);
/* Wait between outputs, if needed. */
delay(‘10e-6’);
output(outY);
/* Wait for internal state to finish. */
delay(‘10e-6’);

}

This DSL example generates a temporal behavior similar to the timeline in the following
figure.

Note: The output port statements must be in the same order as the execution of the
functional model.

If a viewport is available on a functional model, an internal state variable can be referenced
in a delay expression or in the conditional clause of an if statement. See VCC Help for
details about using viewports.

The following DSL model is dependent on the input data and the attributes of the behavior
model and architecture model.

delay (expr) Delays the simulation time from the current instant by the number of
seconds specified by the expression.

Simulated time:

Reaction begins

Port i read

Output emitted on port o

Output emitted on port p

Reaction ends

t t+20 t+35 t+45 t+55
March 2001 37 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
#pragma “DELAY_MODEL_VERSION” “1.0”
attribute integer ntaps;
attribute real cps;
delay_model()
{

//First, read the input value.
input(iblock);
run();
//Now, delay according to how long it takes to do an FIR.
delay(‘((real) ((5 + iblock.npts) * (5 + ntaps))) / cps’);
//For each output port, add ouput statement.
output(oblock);

}

In this script, there is an input port named iblock of composite type with an integer field called
npts. The behavior model has an integer property called ntaps that is declared as an
attribute in this model. The architecture model has a real performance property called cps
that represents the clockspeed as cycles per second. The cps performance property is also
declared as an attribute of this model. The casting operator real converts the integer
expression to a real value because the delay expression must evaluate to a real expression.

Restrictions in DSL Semantics to Support Services

In previous VCC releases, you could use DSL to control both the order in which the outputs
propagate from a block as well as the time delays between these output propagations. With
the use of services in the current release, it can be the behavior, not the DSL script, that
controls the order in which the outputs propagate from a block. You can use DSL to control
the time delays between the output propagations. However, when a non-zero delay separates
two output propagations (that is, a use of the ‘delay’ primitive with a non-zero parameter
separates two uses of the ‘output’ primitive), the output port ordering in the DSL script must
be consistent with the ordering from the execution of the behavior.

Furthermore, the behavior may execute, at most, one Post operation on a given output port
in any reaction. The following example illustrates these points.

Example

Consider a behavior model with two output ports, o1 and o2, as follows:

void CPP_MODEL_IMPLEMENTATION::Run()
{

...
o1.Post(...);
o2.Post(...);
...

}

The corresponding DSL script is incorrect if it looks like this:
March 2001 38 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
delay_model()
{

...
output(o2); // This is incorrect because
delay(‘1.0’); // the outputs were generated
output(o1); // in the reverse order.
...

}

Annotated C Performance Model

The annotated C performance model is derived from a clearbox or whitebox model. The
original model is annotated with inline delay calls and memory accesses to create the
annotated C performance model. The VCC software estimator automatically inserts the
annotations. Note that this technique is only applicable when you are mapping your behavior
to a processor.

The VCC software estimator reads a restricted form of C code and estimates the cost of
execution of each basic block. These estimates are parameterized by the cycle counts
specified in the processor basis file. In addition, the software estimator inserts memory
accesses for instructions and data fetching and estimates the size of the memory segments.
The performance model is also impacted by the register allocation technique chosen for the
model.

You can control many features of the software estimator. For more information, see the VCC
Modeling Guide.

This performance model generates a temporal behavior similar to the following timeline:

Register Allocation

Without register allocation, VCC assumes that all variables are allocated to memory. The
software estimator attributes a delay for loading variables from memory into registers prior to
each use of the variable, and for storing variables in memory after each use. Using this
method, the delay incurred by memory accesses might be pessimistic.

Simulated time:

Reaction begins

Port i read

Output emitted on port o

Output emitted on port p

Reaction ends

t t+20 t+30 t+35t+3
March 2001 39 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
To improve this estimate, you can use register allocation for variables in a Whitebox C model
in order to more closely estimate the actual processing cost of accessing variables. Register
allocation assumes that as many registers as necessary are available and will be used. This
implies that every use of a given variable does not result in a load and that every definition of
the variable does not result in a store.

You can use register allocation for local scalars, parameters, or both. When you select one of
these options, SUB and RET instructions in the processor basis file provide estimates for the
cost of saving and restoring registers. Without register allocation, LD and ST instructions
estimate the cost of memory load and store operations, which incur larger delays.

Note that register spills are not estimated. If the number of local scalar variables might exceed
the number of general purpose registers, such as in data path code, this estimation might be
optimistic. For most control path code, however, this estimation should be acceptable.

Annotated C++ Performance Model

The annotated C++ performance model is specified by inserting performance calls directly
into your Blackbox C++ behavior model or service definition. This is the most general
modeling style, which lets you model delays caused by the control structure of the model. You
also have more freedom to model the performance at different levels of accuracy.

Performance calls in a behavior or service definition are made to routines specified in service
declarations. The following four service declarations are useful in annotated C++
performance modeling:

■ DelayDeclaration

■ MemoryAccessDeclaration

■ InstructionCostDeclaration

■ ImplemenationSizeDeclaration

The details on the routines available in these services declarations can be found in the VCC
Library Reference.

Before one of these service declarations can be used by the model, you must place it in the
Uses tab, which is available when you are editing the properties of the model. (To access the
Uses tab, open a .cpp file from Create, right click inside the text editor window, and choose
Properties.)

In general, performance calls in the C++ model have no effect if the model is used in a
functional simulation.
March 2001 40 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
In a performance simulation, you must be able to bind the service declarations used for the
performance calls to service definitions based on the mapping to architecture design. For
example, the InstructionCostDeclaration service declaration is typically supported only by
a processor, and if the behavior is mapped to a RTOS running on that processor, the
implementation of InstructionCostDeclaration associated with that processor will be used.
If, on the other hand, the behavior is mapped to an ASIC, it is unlikely that there will be an
implementation of InstructionCostDeclaration available to satisfy binding.

Using DelayDeclaration

You use this service declaration to specify delays during a performance simulation. Delays
can be expressed in terms of clock cycles or absolute time. See the VCC Library Reference
for details of this service declaration.

The following example illustrates how you can use the DelayDeclaration.

Example

void CPP_MODEL_IMPLEMENTATION::Run()
{

...
// Delays this behavior for two clock cycles. Assumes the
// DelayDeclaration "Handle Name" on the "Uses" properties
// tab for the model is "delayInterface".

delayInterface.delayCycle(this, 2.0);
...

}

Using InstructionCostDeclaration

You use this service declaration for delay modeling based on a set of architecture-
independent virtual instructions. For more details on this service declaration, see the VCC
Library Reference, and for more details on these virtual instructions, see the information
about annotated C delay models in the “Architecture Models” chapter of the VCC Modeling
Guide.

One way in which you can use the InstructionCostDeclaration in a C++ model is by
combining it with the DelayDeclaration to specify delay in terms of a set of virtual
instructions. The actual delay will vary depending on the mapping behavior and the costs
assigned to those instructions on the target processor.

The following example illustrates how you can use the InstructionCostDeclaration.
March 2001 41 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
Example

void CPP_MODEL_IMPLEMENTATION::Run()
{

...
// Delays this behavior for the execution of these 3 virtual
// instructions. Assumes the "Handle Name" on the "Uses"
// properties tab for InstructionCostDeclaration is
// "instructionInterface". The call to getInstructionDelay
// could be done once in the initialization
// routine instead.

double d = instructionInterface.getInstructionDelay (this,
"ST + GOTO + OP.i");

delayInterface.delayCycle(this, d);
...
}

Using MemoryAccessDeclaration

This service declaration provides routines for modeling memory references. References may
be made with respect to particular memory segments of the caller, or with respect to a
particular value of the vccAddress type. Both reading and writing references are supported
and the length of the reference is specified as an integer number of bytes. See the VCC
Library Reference for details of this service declaration.

If you use memory segments, you should define the memory segments for the behavior or
service definition model. Do this in the Memory Segments section of the Parameters tab
when you are editing the properties of the model from a behavior diagram. Also, you should
map the memory segments on the corresponding processor on the mapping diagram. Do this
on the Link Memory Segments command on the processor.

Annotating Code/Data Memory References in Blackbox C++ Annotated Models

After you have specified the code/data segments as a property of your model, you can
annotate your model with memory accesses to these code/data segments.

Typically, in the init() function, you get an index to the memory segment address for faster
access

unsigned module, codeSeg, dataSeg;

void Init(){

...

module = memDeclaration.registerModule(this);

codeSeg = memDeclaration.registerModuleSegment(module, "code");

dataSeg = memDeclaration.registerModuleSegment(module, "data");

}

Then, in your Run() (or other service functions), you can write:
March 2001 42 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
void Run(){

...

// Read 20 bytes from text segment offset 50

memDeclaration.reference(module, codeSeg, 20, 50, memDeclaration.read)

...

}

Note: The offset specified for code/data memory reference is written to the segment of this
service definition. This segment is then mapped to a specific architecture memory. Thus, the
behavioral service definition can be annotated independent of the other software blocks and
the linking/relocation information.

Using ImplementationSizeDeclaration

This service declaration provides routines for extracting architecture-specific information
such as the sizes of various data types on the target platform. For more information see the
VCC Library Reference.

The following example illustrates how you can use the ImplementationSizeDeclaration.

Example
void CPP_MODEL_IMPLEMENATATION::Init()

{

...

// Obtain and store the size of a ’double’ on the target
// platform. Assumes the "Handle Name" on the "Uses"
// properties tab for ImplementationSizeDeclaration is
// "sizeofInterface".

int sizeofDoubleInBytes=sizeofInterface.getSizeOfDouble();

...

}

Scheduling Shared Resources

When multiple behaviors are mapped to the same architecture model, these behaviors might
share the same resources. For example, if multiple behaviors are mapped to an RTOS, they
contend for execution time on the processor. In this example, the RTOS arbitrates between
the behaviors by implementing a scheduling policy (such as round robin scheduling, priority-
based scheduling, and so forth). In the VCC environment, a scheduling policy is modeled by
an architecture service on the RTOS or ASIC architecture model.
March 2001 43 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
Performance Impact of Scheduling

Scheduling involves two fundamental concepts

■ Activation–a state of readiness

■ Reaction–the run state of a task from the time it starts to the time it finishes.

A task is activated whenever an event is received on any input port. An activated task waits
for its assigned scheduler to respond with a start message. Once started, if the task is not
suspended, it reacts until its performance model signals that the reaction is complete.

The activity of a task can be represented as a pair of concurrent finite state machines, or the
equivalent product machine, as shown in the following figure.

The following transitions signal the conditions for state changes. They are issued by the
simulator, scheduler, or a delay model associated with the task, as noted.

Transition Sender Meaning

Activate Sent by the simulator as a result of
other behaviors sending input to the
behavior represented by the task

The task is ready to run.

Deactivate Sent to the simulator as a result of
receiving a start message from the
assigned scheduler

The task no longer needs to be
activated. (It is already running,
or it has no input.)

Deactivated

Activated

Idle

Reacting

ActivateDeactivate Finish Start
March 2001 44 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
To properly model software, both DSL and annotated C and C++ performance models can be
suspended and resumed by an arbitrated scheduler. Suspending a reaction makes time stop
for the performance model. Once the reaction is resumed, time begins again. This
preemption capability can be fully integrated with the VCC scheduling facility without requiring
changes to the functional model.

To support preemption, the scheduler provides an additional scheduler transition:

Start Sent by the scheduler to which the task
is assigned

The reaction has started.

Finish Sent by the delay model that is
associated with the task

The reaction has ended.

Transition Sender Meaning

Suspend Sent by the scheduler to which the task
is assigned

Stop processing the current task to
activate a higher priority task.

Resume Sent by the scheduler to which the task
is assigned

Continue running the suspended
task.

Transition Sender Meaning
March 2001 45 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
The following figure illustrates the addition of the suspended state in the task model.

The resume/suspend transition controls changes between the reacting and suspended
states.

If preemption occurs after the input sampling phase, it delays the outputs by the duration of
the preemption.

If preemption occurs during input sampling, computation might be affected. Input values
might be overwritten before they are sampled, or new events might arrive that were not
available originally. It is precisely these effects that need to be understood through simulation.

Scheduler Services

In the VCC environment, scheduling is modeled as an architecture service. This service is
responsible for managing the state for each of the tasks mapped to it. The scheduler service
determines what happens when two tasks request to run at the same time, and it defines the
policy for preemption.

Deactivated

Activated

ActivateDeactivate

Idle

Reacting

Suspended

Finish Start

Suspend

Resume
March 2001 46 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
Scheduling policies can vary broadly. For example, a scheduler modeling a clock for digital
hardware can disregard the notion of activation and start the reactions of all its tasks at a fixed
frequency.

In contrast, a scheduler for a real-time operating system (RTOS) tracks activations of tasks
as requests for service. In this case, the relation between activation and reaction is a complex
function involving activated tasks and a set of priorities associated with them.

Most common scheduling policies are modeled as architecture services in the
VCC_ArchitectureServices Library. The VCC simulator also provides support for modeling
single-threaded and parallel-threaded schedulers.

Single-Threaded Scheduling Model

The single-threaded scheduling model transitions a task from one state to another. Receiving
an activation notice for one of its assigned tasks triggers one of the following changes.

■ If the scheduler is idle, it determines the next task to run based on its scheduling policy.

■ If a task is currently running and preemption is allowed, the scheduler determines if the
new task preempts the current task. If so, the current task is suspended, and the
scheduler determines the next task to run based on its scheduling policy.

If the new task does not preempt the current task, the new task is maintained in the
queue until the scheduler determines that it is next.
March 2001 47 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
The following figure shows how the scheduler transitions through each state.

Modeling the overhead of scheduling uses delays associated with state transitions for the
starting, resuming, finishing, and suspending states of the behavior.

RTOS Scheduler Services

Most application scheduling can use the following standard, single-threaded schedulers
supplied in the VCC_ArchitectureService library.

■ Cyclo-static scheduler

■ FCFS scheduler

Starting or
resuming x

Finishing x

Suspending

x

Idle

Next?

Running x

Preempt x?

Activate

Run x

ActivateNo
March 2001 48 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
■ Static priority scheduler

■ Round robin scheduler

To configure these standard schedulers, specify the overheads for transitions in the scheduler
states. Refer to VCC Help and the VCC Library Reference for details about setting these
overheads when using a scheduler.

Cyclo-Static Scheduler

The cyclo-static scheduler associates an assigned task_order with each task and executes
its assigned tasks on a fixed schedule. The scheduler needs at least one activation request
before it can execute. When the scheduler receives an activation, it cycles through its
schedule running each task in the order specified, then returns to the idle state. If a block is
not runnable when its turn arrives, the scheduler sends an error message and continues with
the next task.

Tasks are run from lowest to highest task order.

This type of scheduler is for behaviors that can be statically scheduled, such as a static
dataflow.

First-Come-First-Served (FCFS) Scheduler

The first-come-first-served (FCFS) scheduler runs its tasks in a strict first-come-first-served
activation order. When this scheduler receives an activation request, it runs its assigned tasks
based on their activation timestamps.

Static Priority Scheduler

The static priority scheduler associates an assigned priority with each task. The priority is
fixed for the duration of the simulation. The scheduler runs the task with the highest priority
first. By default, the highest priority is defined as the largest task_priority value of its
assigned tasks. This definition can be changed by changing the value of the
LargestPriorityIsHigher performance property for this scheduler.

Activated tasks at equal priority are scheduled on a first-come-first-served basis.

This scheduler is parameterized to provide both preemptive or nonpreemptive modes.
March 2001 49 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
Round Robin Scheduler

The round robin scheduler associates a static priority with each task. The scheduler runs the
task with the highest priority. By default, the highest priority is defined as the largest
task_priority value of its assigned tasks. This definition can be changed by changing the
value of the LargestPriorityIsHigher performance property for this scheduler.

Activated tasks at the same priority share the scheduler in a round-robin fashion using a
specified time slice. The size of the time slice is configurable by the Quantum performance
property.

RTOS Models

If multiple behaviors are running on the processor model, it requires a scheduler. In the VCC
environment, the scheduler for a processor is represented in the architecture diagram as a
separate model, as shown in the following figure.

The processor model is attached directly to the bus model. The scheduler model is assigned
to the processor model using the Architecture > Scheduler Assignment command. (The
previous figure shows this connection with a double line.)

Bus

Processor

RTOS
March 2001 50 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
All behavior models accessing the processor are mapped to the scheduler model, as shown
in the following figure.

The scheduler model can represent an RTOS or a single task. Both of these representations
support a scheduler service to arbitrate the tasks. The RTOS typically provides additional
services for standard C library calls, virtual timers, mutexes, and so forth.

Depending on the scheduler you select, you might need to specify one of the following link
parameters (on the mapping link) to sequence tasks.

Note: On the mapping link, you are prompted for all link parameters of all performance views
of the scheduler. You need only set those parameters that are used in the configuration you
have selected.

Refer to Exporting Parameters on page 123 for information about exported parameters.

Nested Schedulers

VCC also supports nested schedulers to model more complicated software architectures
such as the grouping of multiple behaviors onto a single task that runs its behaviors

task_priority Priority of the task associated with a specific mapping
connection. Depending on how the scheduler model is
defined, a higher value can mean either a high or low
priority.

task_order Order to execute a task on CycloStaticScheduler.

Bus

Processor

RTOS

Behavior 3

Behavior 4
March 2001 51 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
sequentially. The single task is modeled as a secondary scheduler and is assigned to the
primary scheduler using the Architecture > Scheduler Assignment command.

In this illustration, scheduler A is assigned directly to the processor. Scheduler B represents
a second tier of scheduling and is assigned to scheduler A, not to the processor.

Scheduler B is considered a task assigned to scheduler A. If scheduler A requires link
parameters, these parameters need to be set for the assignment between schedulers A and
B. For example, if scheduler A has a prioritized scheduling policy, a task_priority link
parameter needs to be set for scheduler B.

Bus

Processor

Scheduler A

Scheduler B
March 2001 52 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
Behaviors can be mapped to both schedulers, as shown in the following figure.

Each mapping represents a task assigned to one of the schedulers. In this example, the
mapped behavior models 3, 4, and 5, as well as scheduler B, are assigned to scheduler A.
Behavior models 6, 7, and 8 are assigned to scheduler B.

How each behavior is mapped to a scheduler affects the run sequence of the behavior.
Scheduler A handles all tasks assigned to it based on its scheduling policy. Scheduler B
sequences its assigned tasks based on its own scheduling policy. When scheduler B is ready
to run, all behaviors assigned to it are processed as a task flow on scheduler A, but in the
sequence determined by the policy of scheduler B.

For example, a static priority scheduling policy can be used to sequence the tasks on
scheduler A, while a first-come-first-served scheduling policy can be used to sequence the

Bus

ProcessorScheduler AScheduler B

Behavior 6

Behavior 7

Behavior 8

Behavior 4Behavior 3 Behavior 5

pri = 30 pri = 10 pri = 40

pri = 20
March 2001 53 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Models
tasks on scheduler B. The following illustration provides a possible sequence of events for this
example.

Behaviors 5 and 3 run first. Once they complete, scheduler B is ready to run. All of the
behaviors assigned to scheduler B run in the order in which they were received by scheduler
B. Once these three tasks complete, behavior 4 runs.

Scheduler A Run Sequence:

1. Behavior 5

2. Behavior 3

3. Scheduler B

4. Behavior 4

Scheduler B Run Sequence:

1. Behavior 6

2. Behavior 7

3. Behavior 8
March 2001 54 Product Version 2.1

VCC Architecture Evaluation Guide
3
Communication Between Behaviors

Paths of communication exist in the architecture. For example, buses communicate with
hardware, and interprocess communication, semaphores, and mailboxes handle
communication between software tasks.

This chapter provides details about

■ Bus Arbitration

■ Communication Patterns

■ Behavior Memories

■ DMA Modeling

■ Cache Modeling

■ Behavior Timers

Bus Arbitration

In a behavior diagram, communication paths are defined as wires between one source
function and one or more destination functions. If the source and destination functions are to
be partitioned onto separate pieces of hardware, the communication path usually occurs over
a bus.

Typically, a communication path can be viewed as a dedicated or shared resource, such as a
bus.

■ When a communication path is dedicated, a single path exists between a source and
destination, and delays incurred by tokens traversing the path are caused by propagation
and signaling.

■ If the path is shared, there are multiple behavior wires mapped to one architecture
communication path. In this case, contention for access to the shared resource and a
need for arbitration create additional delays.
March 2001 55 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
To model communication between different architecture models, some type of bus resource
must be specified in the architecture diagram. VCC supports data, interrupt, and general bus
resources.

The simple performance model for bus loading is produced by mapping each wire that shares
a path of communication in the behavior model to a bus in the architecture. As a result of this
mapping, the original behavior netlist is modified so that a bus sender service is placed
between each source and destination, as shown in the following figure.

The bus sender service packages the token being sent and relays it to the bus model that
represents the contention and delay of the shared bus. Each bus sender service can have
attributes associated with it that convey information about the source and destination
functions, such as a bus master’s ID and priority or a slave’s required wait cycles. The bus
model obtains this information from the token relayed by the bus sender service.

The protocol for communication modeling can use fire-and-forget messaging (also known as
blocking). When a source sends a token, the bus sender service intercepts the token,
packages it, and submits it to the bus model. The bus model delays tokens appropriately
based on the bus arbitration policy being used. Once the delay is complete, the bus model

F1

F2

F3

A1 A2

Mapping process

F1

F2

F3
Bus Sender 1

Bus Sender 2

Bus
model
March 2001 56 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
relays the token back to the bus sender service, which sends it to the destination, as shown
in the following figure:

The bus sender and arbiter services are specified on the bus model. If necessary, you can
write your own bus sender and arbiter services. The bus sender service must implement the
BusSenderDeclaration, and the arbiter service must implement the
BusArbiterDeclaration.

Arbitration Models

Arbitration models delay transfers in two ways. The queuing mechanism employed by the
arbitration model itself delays bus access. Additional transfer delays are then calculated using
various characteristics of the bus model. The following table defines characteristics that
contribute to typical transfer delays.

Arbitration Cycles Number of overhead cycles that occur between the completion of one
data transfer and the start of the next

Specified as a bus performance property value. (In the VCC buses
library, this property is named ArbCycles .)

Token packaged
and sentTransfer begun

Token returned

Source
Bus sender service

Bus model Destination

Transfer complete

Time delayed
March 2001 57 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
The following arbitration models are provided in the VCC_ArchitectureServices library. For
detailed descriptions of these arbitration models, refer to the VCC Library Reference. VCC
also supplies parameterized buses for each of these arbitration models. You can create your
own bus model, which references a VCC arbitration model, or you can create a customized
arbitration model. Third-party bus models might use other arbitration models. Refer to your
library documentation for details about third-party arbitration models and bus models.

FIFO Arbitration

When a transaction is received, the FIFO arbitration model places it in a first-in-first-out
queue. No preemption or priority placement is allowed. The time it takes the transaction to
reach the head of the queue accounts for the resource contention delay.

The cycles required for the transfer delay are calculated using the following equation:

[ArbCycles + WaitCycles * (bit_size + BusWidth - 1) / BusWidth]
/ BusClock

When the transaction reaches the head of the queue, its byte size is determined and the
transfer delay is calculated. The bus model then waits the number of cycles calculated before
returning the token to the bus sender service.

Preemptive FIFO Arbitration

The preemptive FIFO arbitration model places transactions in a first-in-first-out queue as they
are received. A priority is specified when the communication is mapped. The time it takes the
transaction to reach the head of the queue accounts for the resource contention delay.

Data Transfer Number of cycles required to transfer the data from the source to the
destination with no contention

The data transfer rate depends on the width of the data bus, the bus
clock speed, and the size of the transaction. The width of the data bus
and the bus clock speed are specified in bus performance property
values. The size of a transaction is determined by the data type
definition of the transaction.

Wait Cycles Number of additional cycles required to compensate for slaves
operating at lower clock frequencies than the masters that are
accessing them

By default, one cycle is required to write to or read from a slave.
Additional cycles are specified in a bus performance property value.
March 2001 58 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
When the transaction reaches the head of the queue, its byte size is determined and the
transfer delay is calculated using the same equation as the FIFO arbitration model:

[ArbCycles + WaitCycles + (bit_size + BusWidth - 1) / BusWidth]
/ BusClock

With this model, however, a transaction with a higher priority than the currently running
transaction preempts the running transaction. If a transaction is preempted, its transfer delay
is recalculated using the remaining bytes left to transfer at the time the preemption occurred.
The same equation is used to calculate the delay for resuming the transfer, but the remaining
bytes to transfer is used for the byte_size .

Round Robin Arbitration

The round robin arbitration model places received transactions in a round robin queue. A
separate queue exists for each priority. The queue containing the highest priority transactions
is processed first. The time it takes the transaction to reach the head of the queue accounts
for the resource contention delay.

The BusOwnerCycles bus performance property defines the maximum number of cycles that
a master (usually a task) can control the bus. Large transfers represented by a single
transaction are split up into one or more periods of ownership. Each of these periods of
ownership is delayed based on the following equation:

{min [ArbCycles + BusOwnerCycles, ArbCycles + WaitCycles * (bit_size
+ BusWidth -1) / BusWidth]} / BusClock

When the remaining data to transfer requires less than a full period of ownership to transfer
or if the transaction is small enough to complete within one period of ownership, the following
equation is used:

[ArbCycles + WaitCycles + (RemainingBits + BusWidth - 1) / BusWidth]
/ BusClock

When enough time slices have occurred to satisfy the number of cycles needed to transfer all
of the data, the token is returned to the bus sender service.

Simple Bus Arbitration

The simple arbitration model uses FIFO arbitration and models the delay based on the bus
bandwidth (bps). No preemption or priority is allowed. The time it takes the transaction to
reach the head of the queue accounts for the resource contention delay.

When the transaction is at the head of the queue, its byte size is determined, and its delay is
calculated using the following equation:

(byte_size * 8) / BusBandwidth
March 2001 59 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
This arbitration model can be used for shared or dedicated buses. When used for a dedicated
bus, no queuing delay exists. The delay reflects only the transfer delay.

Communication Patterns

The previous section explained how to map a communication wire to a bus, which causes bus
loading. For a more refined simulation, you can map a communication wire to a
communication pattern. The following figure shows a communication wire mapped to a SW-
>HW RegisterMapped pattern.

A pattern models specific protocols between the sender and receiver. A pattern also models
interaction with other architecture components.

For example, to transfer a large data token from software to hardware, you might choose a
shared memory pattern. This shared memory pattern models

■ Writing the data to memory

■ Sending the event to the ASIC

■ The reading of the data from memory by the ASIC

This new model accounts for the delays of the three bus transactions as well as the memory
delay for reading and writing data.

Data Bus

CPURTOS ASIC

Register
Mapped
SW->HW

Beh1 Beh2

Sender = RegisterMapped:SwSender
Receiver = RegisterMapped:HwReceiver
March 2001 60 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
To transfer a smaller data token, you might choose a Register Mapped pattern in which the
data is transferred directly to a register on the ASIC.

VCC provides a library of patterns for each fixed pattern supported by the VCC Links to
Implementation Flow. These patterns are located in the VCC_Patterns library. Each cell has
a symbol view, which is instantiated in the mapping diagram. The proto and fixed_pattern
views are the performance views, which you need to bind in the mapping configuration. The
proto view models the refined simulation of the protocol, while the fixed_pattern view
models only the simple bus loading.

Note: When exporting your design, you need to bind the protoImpl view if you chose the
proto performance view because additional parameters are needed for export. If you chose
the fixed_pattern view, you do not need to specify additional parameters. The remaining
views in the pattern cell are used for the Links To Implementation flow and can be ignored.

For more information on Links to Implementation, see the VCC Links to Implementation
Design Guide.

Performance Model of a Pattern

Each pattern contains an arrangement of architecture services that model the path from
sender to receiver. The architecture services are distributed on the architecture components
in the architecture diagram. The performance view of a pattern binds the appropriate sender/
receiver service definitions, which start and finish the particular communication protocol.

The sender architecture service for the pattern defines the OutputPort declaration for
posting values to ports. The receiver architecture service defines the InputPort declaration
for reading ports. VCC automatically inserts the sender service on the output port and the
receiver service on the input port of the behavior communication wire.

In the following example, the SW->HW RegisterMapped pattern binds the
RegisterMapped:SWsender and the RegisterMapped:HWreceiver services. VCC provides
sender and receiver services for all the fixed patterns in the VCC_PatternServices library.
March 2001 61 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
There are architecture services between the read and write services that provide

■ Communication from sender to receiver

■ Effects of using shared memories, caches, DMAs, bus bridges, and so forth

■ Effects of instruction fetches or data reads and writes from software tasks

The sender service can use services supported by the architecture component to which the
source behavior is mapped. The receiver service can use services supported by the
architecture component to which the destination behavior is mapped. In previous example,
the sender service can use services supported by the RTOS and by association the CPU as
well. The receiver service can use services supported by the ASIC.

Distributing the services on each architecture component modularizes the performance
impact to each component. If the architecture service interacts with other components, it
declares the use of another service. Then during mapping, VCC binds the used service by
following the architecture topology in the architecture diagram. To declare the use of another
service in an architecture service, open the textual representation of the service in VCC, right

Data Bus

CPURTOS ASIC

Register
Mapped
SW->HW

Beh1 Beh2

Sender = RegisterMapped:SwSender
Receiver = RegisterMapped:HwReceiver
March 2001 62 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
click in the text window, and choose Properties from the pop-up menu. Click on the Uses tab
and add the service. (See the VCC Help for more information.)

A service on an architecture component can use services on the same architecture
component, on the port of the same architecture component, and on the architecture
component to which it is connected. For example the CPU and ASIC can use services
supported by the bus. The RTOS can use services supported by the CPU.
March 2001 63 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
The following figure shows the bindings of services to complete a SW->HW Register Mapped
pattern for the previous mapping diagram:

Additional Services

A pattern might require services other than those provided by the components of an
architecture diagram. For example, a pattern might require a specific interrupt service routine
for the communication to be complete (as in the case of an InterruptPattern). VCC supports
instantiates clauses on services. An instantiates clause specifies another service that must
be instantiated for this pattern to work properly. The instantiates clause is defined by a
handle name, a reference to another service definition (by cellview name), and values for all
parameters of that service. The instantiated service definition can use the same set of
services that can be used by the original service.

Data

CPURTOS ASIC

Register
Mapped
SW->HW

Beh1 Beh2

Sender =
RegisterMapped:SwSender
Receiver =
RegisterMapped:HwReceiver

FCFS Bus Adaptor

Bus Slave Architecture
Service

Bus Slave API

RegisterMapped:
HWReceiver

Value(), Enabled()

CPU Memory Access
Architecture Service

CPU Memory
Access API

Standard C Library
Architecture Service

Standard C
Library API

RegisterMapped:
SWSender

Post()

Standard C
Library

CPU Memory
Access

= Service Definition

= Service Declaration
March 2001 64 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
For example, the InterruptRegisterMapped:receiver service instantiates the
ISR.blk_service with the handle name isr. It specifies the parameter values for the
InterruptNumber and ISROverhead as declared by the ISR service. Because the receiver
can use the CPU (destination behavior is mapped to software) the instantiated ISR can also
use services provided by the CPU. In this example, the ISR uses the InterruptController
service of the CPU.

Reusability of Patterns

To support reuse, most of the patterns are parameterized. The parameters can be specified
on

■ The pattern instance

■ The mapping link from the communication arc to the pattern (if a different value can be
applied to each communication wire)

Some parameters reference other architecture components in the architecture diagram and
are declared as participants of the pattern. You must specify the name of an architecture
instance in the diagram as the value of this parameter. For example, the SharedMemory
pattern sends messages to a memory component that is neither the sender nor the receiver
architecture component. You need to specify the instance name of an architecture memory
in the architecture diagram as the MemoryParticipant of the SharedMemory pattern.

Pattern Support for Fanouts

If a pattern instance is associated with an output port, then, by default, it covers all wires from
that output port to the connected input ports. If the pattern instance is associated with an input
port, then it covers only the single wire from the source output port to the input port.
March 2001 65 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
Consider the following figure, which shows a behavior that is wired to two other behaviors with
a fanout. The communication from Beh1 to Beh2 might be different than the communication
from Beh1 to Beh3. If you map Beh1.O1, the same pattern applies. However, you can map
Beh2.I1 and Beh3.I1 to different patterns.

Addressing

Communication between behaviors requires that data or an event is sent to a specific
memory register of an architecture instance. If the communication is over a bus, the transfer
is directed by specifying a symbolic address (the instance name and an offset into that
particular architecture instance). VCC converts the symbolic address into a port ID and offset
by searching the architecture for the appropriate port on the specified instance.

For implementation, the symbolic address must be converted to a physical address. The
physical address is determined by assigning each architecture instance a subrange into the
bus address range.

Therefore, the designer must set the bus address range on each bus, and subranges on each
architecture instance port connected to the bus. Finally, the offset must be specified on the
mapping link for each communication. The designer can specify the offset explicitly, or VCC
can allocate the offset of a bus address using an algorithm that assigns non-conflicting
addresses to each mapping connection.

Beh1

Beh3

Beh2

O1

I1

I2
March 2001 66 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
The following figure identifies the locations of the parameters that determine bus addresses.

Bus Bridges

A bus bridge acts as a bridge between two buses. You can use a bus bridge to perform any
address and service definition translations that you require. A bus bridge allows an element
on one bus to write to and read from an element on another bus. A bus bridge can hold each

Bus

ASIC
V

Bus parameter specifies the
bus address range.

Mapping connection parameter
specifies the address offset into the
memory specified on the pattern.

Resource port parameters specify
the address subrange for each port.

Mem
V

CPU
V

Beh1 Beh2
When using shared memory, the
memory parameter specifies which
memory to use.

Interrupt
Shared
Memory
March 2001 67 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
bus for the duration of a bus transaction. The following figure illustrates how a bus bridge
operates within the context of a simple architecture.

The source of the bus transaction (an annotated behavior, an output port service definition,
or a memory reference service definition) knows the final destination address of a bus
transaction in terms of a port id and an offset. The mapping editor derives this information
based on the architecture topology and mapping, and places the information on the source
instance as an attribute. Because the final address is known, for the purposes of simulation,
no address translation is required in the bus bridge. Assuming the bus bridge has an input
and output port, a slave adapter service definition is placed on the input port, a bus adapter
service definition is placed on the output port, and a service definition is placed on the body
of the bus bridge resource to propagate the data from the slave adapter to the bus adapter.

The service definition on the body of the bus bridge resource is called the bus bridge service
definition. The bus bridge service definition implements the SlaveDeclaration and uses the
BusDeclaration, and these declarations are implemented by the slave adapter service
definition and the bus adapter definition, respectively. Typically, the bus bridge service
definition is the only service definition that a bus bridge IP provider needs to write. Bus IP

B2B1

RTOS CPU

BRIDGE

ASIC
March 2001 68 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
providers typically provide the bus adapter and slave adapter service definitions that go on
the bus bridge ports.

The following figure shows the service definitions on the bus bridge resource and the
declarations that they use for a simple two port bus bridge.

You can construct the bus bridge with any number of service definitions, but the service
definition that is used by the service definition external to the bus bridge must implement the
SlaveDeclaration, and the service definition that uses a service definition external to the
body must use the BusDeclaration. This ensures that your bus bridge model is interoperable
with different buses.

Input Port (Slave Port)

IP Vendor Defined Declaration

Slave Adapter Service Definition

Bus Bridge Service Definition

Bus Adapter Service Definition

Body

SlaveDeclaration

BusDeclaration

Output Port (Master Port)

IP Vendor Defined Declaration
March 2001 69 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
The VCC software provides a bus bridge service definition in the
VCC_ArchitectureServices library. It implements the SlaveDeclaration and uses the
BusDeclaration. You should place this bus bridge service definition on the body of a
unidirectional, 2-port bus bridge.

Because bus bridges can have multiple ports, the bus bridge must declare the legal direction
of communication across the bridge. On each port, declare the output port on which the data
is propagated using the vccOutputPortName parameter.

Behavior Memories

Behavior memories model the storage and retrieval of data in a behavior diagram. This
communication takes place through strongly typed declarations that are defined in the
behavior diagram.

The following example illustrates how behavior memories are used in the VCC environment.

Behavior Memories Example

Using Behavior Memories

The process for using behavior memories is as follows:

■ Place the memory instance in your behavior diagram.

■ For each behavior that reads or writes to the behavior memory, declare a memory
reference on the behavior model.

■ Associate each memory reference to a memory instance.

■ In the behavior model, write the code to access the memory.

m inst

m1 Ref

m3 Ref

B1

B3
March 2001 70 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
Place the Memory Instance

When you instantiate a memory instance in a behavior diagram, you need to specify the
name, type, and an initial value in the Properties dialog box. When you select and highlight
the memory instance, you can attach probes, displays, and breakpoints.

Declare the Memory Reference

In the symbol view of the behavior model, use the Memory Reference tab on the Properties
dialog to declare the reference.

In the Behavior Memories Example on page 70, m1 is declared as a memory reference with
the following parameters:

Name: m1
Datatype: Integer
Access mode: read

m1 is the memRef with accessMode (read) and the variable arg must have been declared
of type Integer.
March 2001 71 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
Associating a Memory Reference with a Memory Instance

Associate the memory reference on the behavior instance with the memory instance using
the Memory Reference tab of the Properties dialog for the behavior.

In the Behavior Memories Example on page 70, the m1 reference on the B1 instance is
associated with the m memory instance through the Memory Reference tab of the Properties
dialog for B1.

Accessing Memory from within Your Model

Write your model code to access memory.

In the Behavior Memories Example, B1 is a Blackbox C++ behavior model. The code for the
B1 model contains the following line:

m1.read(&arg);

This line assigns arg the integer value currently stored in the memory associated with
reference m1.

Mapping the Memory Instance

The following figure illustrates behavior memories in a mapping diagram.
March 2001 72 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
Each of the arrows in the diagram represents a function call. The dashed lines represent the
associations between memory reference and memory instance. The dotted lines represent
the communication pattern chosen for that memory reference.

Note: The dashed and dotted lines are not displayed in the VCC diagram, but there is
highlighting to indicate these relationships.

Mapping the Memory Instance

The behavioral memory is mapped to an architecture memory. In the Performance tab for the
link, there is a parameter for the offset. You can set the offset or you can leave it to be
assigned by the address allocator.

Mapping the Memory Reference

To model the communication between the memory reference and the architecture memory,
you map each memRef to a Memory pattern instance. The Memory pattern should have
service handles for read, write, and readWrite. The appropriate service is associated based
on the accessMode of the memory reference.

The read, write, and readWrite services use the MemoryAccess declaration supported by
the architecture to which the behavior model is mapped. For example, the RTOS or ASIC. The

m inst

m Ref

m Ref

B1

B3

RTOS CPU MEM ASIC

Memory Pattern
March 2001 73 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
MemoryAccess declaration is located in the VCC_PatternServices library and is
described in more detail in the VCC Library Reference.

Additionally, these services can access parameters on the memory reference and the
memory instance.

There are two pattern categories for SW->Memory and HW->Memory. You can set the
default pattern for the SW->Memory pattern category as SWDirectMemoryAccess and
the default pattern for the HW->Memory as HWDirectMemoryAccess. Both of these
patterns are located in the VCC_Patterns library with the other provided VCC patterns.

Alternatively, you can use the SWDMAMemoryAccess pattern.

The pattern instances are very reusable, which means that you can link multiple memory
references to the same pattern instance. For example, multiple memory references of the
same behavior can link to the same pattern instance because the memory addresses are
specified on the memory instance. Additionally, memory references from different behaviors
can share the same pattern instance as long as both behaviors are mapped to software and
communicate directly to the memory. If no DMA is involved, the number of pattern instances
in a design might be two: one for HW and one for SW. You require additional pattern instances
only if DMA is involved.
March 2001 74 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
The following figure illustrates how service definitions with access to the behavioral memory
are arranged based on the Behavior Memories Example on page 70.

The above diagram also shows the architecture resources with which each service definition
is associated. Each of these service definitions is described in the VCC Library Reference.

DMA Modeling

A DMA controller (the DMA) lets you transfer data between two regions in the memory map
without CPU intervention (other than the tasks the CPU needs to perform to start or finish a
DMA request). The DMA usually contains several memory mapped registers that set up a
context (a DMA channel) for the current transfer. For example, registers are normally used to
indicate the source and destination addresses.

A transfer count register indicates how many bytes or words of storage will be transferred. A
control register is used to set up some characteristics of the transfer, or to examine certain
properties of the DMA, such as, priority, interruptabililty, and status. DMA controllers usually

Reader Writer

Standard C Lib SD

Memory Access SD

Bus Adapter SD

Memory SD

Slave Adapter SD Bus Adapter SD

Bus Arbiter Service Definition

Memory
Pattern

RTOS

CPU

CPU
Port

Memory

Memory
Port

Memory
Pattern

ASIC
Port

Bus

m1.read() in B1 m3.write() in B3
March 2001 75 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
support several DMA channels, but data is only transferred one channel at a time unless the
DMA controller is connected to more than one bus.

A DMA can be configured in a number of different ways:

■ Some DMAs are tightly coupled with the bus architecture with which they are connected.

■ DMAs can be on-chip or off-chip devices.

■ DMAs can vary the number of channels supported.

■ Some DMAs have FIFOs for buffering data.

■ Some DMA transfers can be interrupted.

■ Some channels have priorities over others.

Implementing a DMA Device Using Service Definitions

The following example shows how to implement a simple single-channel DMA device. The
device is controlled solely by writing to memory mapped registers on the device. That is, there
are no specific pins for requesting or acknowledging bus requests or grants. In this example,
the DMA closely models the DMA controller found on some popular commercial DSPs.

The DMA controller acts as both a bus slave and a bus master. The DMA also raises an
interrupt when the DMA transfer has completed. The service definition is located in
VCC_ArchitectureServices.SimpleSingleChannelDMA. The DMA is a slave device
because other devices control it by writing into its memory mapped registers.

The DMA implements the ServiceDeclarations.SlaveDeclaration. To issue bus requests
to the bus, the DMA uses the ServiceDeclarations.BusDeclaration. To raise an interrupt,
the DMA uses the declaration ServiceDeclaration.InterruptDeclaration.

This DMA example does not have its own service declaration. Devices use the DMA to write
into its memory mapped registers—they do not communicate to it through a dedicated
service declaration.

Memory Mapped Registers

A DMA contains four memory mapped registers that control it. These registers are mapped
at offsets of 0 through 3, from the base address of the DMA.

■ Source and destination address registers: The source address is the address from which
the DMA device reads. The destination address is the address to which the DMA writes.
Both the source address and the destination address registers are of type vccAddress
in the DMA service definition.
March 2001 76 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
■ Transfer count register: The transfer count register is the number of sequential words, not
bytes, that the DMA transfers.

■ Control register: Writing to the control register starts the DMA transfer. The control
register is not sensitive to any particular values. Writing any value to it initiates the DMA
transfer.

Other Properties of the DMA Service Definition

Cycle Stealing

Often a DMA transfer has priority over the CPU when a bus is shared. This “cycle stealing”
capability is implemented by ensuring that the Priority parameter on the bus adapter that the
DMA is using is higher than that of the CPU.

Concurrency

When a DMA request begins, the DMA transfer occurs concurrently with the task that initiated
the transfer. That is, control returns to the “caller” immediately and simultaneously with the
DMA performing the data transfer. If the caller must block until the transfer is complete, it
should block on a semaphore that is released when the DMA’s interrupt service routine runs.
The DMA’s interrupt service routine is in VCC_ServiceDeclarations.DMADonelSR.

Setting up a DMA Transfer

The DMA declaration is defined and documented in
VCC_ServiceDeclarations.SimpleSingleChannelDMA:blk_serviceDecl. The following
example is a portion of a design that sets up the DMA device for a transfer. This example uses
memory segments and declares a data memory segment named “dma” so that memory
references can be issued to the DMA without using specific addresses. This example is part
of a software block that is mapped to the CPU, which uses the CPU’s memory access
declaration, VCC_ServiceDeclarations.MemoryAccessDeclaration. This could be part
of an RTOS service routine, such as the memcpy function. You could also import it into a
sender or receiver service definition.

Example

// Header file of a service definition using the DMA
class CPP_IMPLEMENTATION:public CPP_MODEL_DECLARATION{
public:

CPP_MODEL_IMPLEMENTATION(const ModuleProto &, InstanceInit &);
void Init();
void Run():
March 2001 77 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
// Declare a segment ID for the memory segment that maps to
// the DMA’s memory mapped registers. Also, set up a memory
// segment for data in the main memory.
MemoryAccessDeclaration<typeObject>::segmentId dmaSeg;
MemoryAccessDeclaration<typeObject>::segmentId dataSeg;

// The next four addresses correspond to the addresses of the
// DMA’s memory mapped registers.
vccAddress dmaSrcReg_;
vccAddress dmaDestReg_;
vccAddress dmaCountReg_;
vccAddress dmaControlReg_;

// These correspond to the actual source and destination
// addresses. They are contained in the DMA’s address
// registers.
vccAddress srcAddressOfDMATransfer_;
vccAddress destAddressOfDMATransfer_;

// When real data is passed on the bus, it must be passed as
// a VCC type and an object of a VCC type. The proper VCC
// typeDefinition needs to be set up, so that the appropriate
// typeObject can be passed.
typeDefinition *addrType_;

};

The following portion of the model communicates with the DMA.

// Implementation of the above header file.
void CPP_MODEL_IMPLEMENTATION::Init() {

// Some initialization needed to use memory segments.
module = memDeclaration.registerModule(this);
dataSeg = memDeclaration.registerModuleSegment(module, “data”);
dmaSeg = memDeclaration.registerModuleSegment(module, “dma”);

// Set up the addresses of each register on the DMA. These
// addresses are used to issue memory write requests onto the
// DMA’s address space.
dmaSrcReg_=memDeclaration.allocate(“dma”, this);
dmaSrcReg_.setArchOffset(0);

dmaDestReg_memDeclaration.allocate(“dma”, this);
dmaDestReg_.setArchOffset(1);

dmaCountReg_=memDeclarartion.allocate(“dma”, this);
dmaCountReg_.setArchOffset(2);

dmaControlReg_=memDeclaration.allocate(“dma”, this);
dmaControlReg_.setArchOffset(3);

// Set up the memory areas where you want the DMA to start
// reading from. This example reads to and writes from the
// main memory.
srcAddressOfDMATransfer_=memDeclaration.allocate(“data”, this);
srcAddressOfDMATransfer_.setArchOffset(10);

destAddressOfDMATransfer_=memDeclaration.allocate(“data”,
this);

destAddressOfDMATransfer_.setArchOffset(20);
March 2001 78 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
// When you write transfer addresses into the DMA, you need
// to pass them on the bus as objects of type VCC.
addrType_=typeDefinition::loadStandardType(

“@VCC_Types.PortAddress”);
}

void CPP_MODEL_IMPLEMENTATION::Run() {
// Code for the rest of the model functionality ...
...
// Start driving the DMA. You need to convert the vccAddress
// to an object of type VCC_Type.PortAddress.
typeObjectComposite source_addr(addrType_);

typeObjectInteger
source_offset(srcAddressOfDMATransfer_.getArchOffset());

typeObjectInteger
source_port_id(srcAddressOfDMATransfer_.getPortInstId());

// Prepare the address to send to the DMA, and send it.
source_addr.setField(“Offset”, &source_offset);
source_addr.setField(“PortInstID”, &source_port_id);

memDeclaration.writeData(dmaSrcReg_, &source_addr, 4);

// Do the same for the destination register.
typeObjectComposite source_addr(addrType_);
typeObjectInteger

source_offset(destAddressOfDMATransfer_.getArchOffset());
typeObjectInteger

source_port_id(destAddressOfDMATransfer_.getPortInstId());

dest_addr.setField(“Offset”, &dest_offset);
dest_addr.setField(“PortInstID, &dest_port_id);

memDeclaration.writeData(dmaDestReg_, &dest_addr, 4);

// Set up the DMA’s transfer count register with the number
// of words to transfer.
typeObjectInteger cnt(10);
memDeclaration.writeData(dmaCountReg_, &cnt, 4);

// Finally, tell the DMA to start the transfer. This call
// returns immediately and the DMA transfer starts
// concurrently.
memDeclaration.reference(dmaControlReg_, 4,

memDeclaration.write);

// Code for the rest of the model functionality ...

}// CPP_MODEL_IMPLEMENTATION::Run

A DMA performs two operations when it does a transfer. During a DMA read transfer, the
device is reading data from the source memory. During a DMA write, the device is transferring
the data it just read into the destination memory. For simulation efficiency this device performs
all the reads in one large transfer, and all the writes in a second large transfer. This is more
efficient in simulation because fewer bus events are generated. However, this approach has
the disadvantage that reads and writes are not properly interleaved, resulting in a loss of
March 2001 79 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
fidelity regarding what is happening on the bus. You can modify the DMA so that it performs
separate read/write requests for each word transferred.

Note: Performing the reads and writes in large transfers is different than a burst mode or
block transfer because the transfer can be interrupted. You can modify the DMA example to
make use of the memory subsystem’s burst capability (if it has one).

Parameters

The DMA service definition contains two parameters. The first parameter,
DMAInterruptNumber, is an integer set to the interrupt number of the interrupt service
routine that the interrupt controller is expecting to service the DMA’s “done” interrupt.

The second parameter, SizeOfSingleDMATransfer, is the size, in bits, of each read and
write transfer the DMA makes. You typically set this parameter to the natural word size of the
system, which is the size of the data bus connected to the DMA (and the size of a word in
memory).

Cache Modeling

You use a cache in the memory hierarchy between the CPU and main memory to balance the
cost and performance of the system:
March 2001 80 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
The CPU always reads from cache. Sometimes, depending on the write policy, the CPU
writes indirectly to memory.

On a memory read, when the memory reference is not in cache, it is called a cache miss,
otherwise it is called a cache hit. On a cache miss, the entire line of memory that contains
the address is copied to cache first, then that reference is read from cache. If your program
exhibits locality of reference, on your next request, you get a hit. A good example of this is
code instructions, which exhibit locality of reference.

Usually, you use separate caches for data and instructions. Data cache modeling is more
difficult, because it depends on the memory allocation/freeing algorithm and the dynamic
nature of data allocation. Therefore, cache performance depends on the cache hit ratio—the
higher it is, the more references are accessed from cache at a faster speed.

Two factors affect the cache hit ratio: the locality of reference of the program and the cache
configuration. Because you cannot control the locality of reference, this section describes
only the cache configuration (the parameters).

How VCC Models a Cache

VCC models a cache by full simulation and records every memory reference. As the program
executes, the CPU sequentially issues instruction fetches and memory reads and writes to
the cache. The addresses are of the form [MemoryPortId, Offset] . The cache uses the
offset to determine whether it is a cache miss or a cache hit.

For a cache hit, the cache returns control to the CPU, and simulation time is advanced by an
amount equal to the cache latency. For a cache miss, the cache issues a request on the bus
and waits for the memory to process the request.
March 2001 81 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
When the memory receives a reply, the cache returns control to the CPU, and simulation time
is advanced by the cache plus memory latencies. The following message sequence charts
provide more detail about the delays encountered with a cache hit and cache miss.

CPU Memory
Access

Dedicated Bus
Adapter

FCFS Slave
Adapter Cache

Cache
miss?

For delay
calculation,
see table.

BusRequest(busTrans) SlaveAccess(busTrans) BusIndication(busTrans)

Callback()
March 2001 82 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
If a cache miss is detected, a further delay is assessed, as shown in the following message
sequence chart.

The following table shows the delays produced when the CPU issues a memory request. The
delays depend on the write policy of the cache and whether the transaction is a read or a write
and whether it causes a hit or a miss. The table assumes that BUS_1 connects the CPU to
the cache, and that BUS_2 connects the cache to memory.

Read/
write Hit/miss Write

policy Transaction size Delay (Excluding Bus Delay)

Bus 1 Bus 2

Read Hit n/a Word n/a Cache read latency for one word

Read Miss n/a Word Lind Memory read latency for one line,
plus cache read latency for one
word, plus memory write latency for
one line if hit write policy is write-
back, cache is full, and replaced line
is dirty*

Write Hit Write back Word n/a Cache write latency for one word

Memory
FCFS Bus
Adapter

FCFS Slave
AdapterCache

FCFS Bus
Arbiter

busRequest(trans)

arbiterRequest(trans)

Request granted

slaveAccess(trans)

BusIndication(trans)

arbiterRelease()

Callback()
March 2001 83 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
Note: The delays in the table depict the cache and memory delays only. They exclude the
bus because the bus delays depend on other activities such as contention.

Cached Versus Non-Cached Data

When the CPU must read or write directly from a memory mapped I/O device without caching
the result, the CPU tags the addresses (vccAddress class) of these requests with the
cacheable flag. Therefore, the cache can differentiate between a cached and a non-cached

Write Hit Write
through

Word Word Cache write latency for one word,
plus memory latency for one word

Write Miss Write
allocate

Word Line Memory read latency for one line,
plus cache write latency for one
word, plus memory write latency for
one line if hit/write policy is write
back, cache is full, and replaced line
is dirty*

Write Miss Write
around

Word Word Memory write latency for one word

* A “dirty” line is one that is the most up to date such that its copy in memory is invalid.

Read/
write Hit/miss Write

policy Transaction size Delay (Excluding Bus Delay)

Bus 1 Bus 2
March 2001 84 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
request by testing that flag. If the flag is false, the cache passes the request (unchanged) to
the memory. Otherwise, the cache checks for a hit or a miss.

Cache Coherency

In an architecture with a cache and a device, such as a DMA or an ASIC, which is capable of
reading or writing directly to memory, it is important to keep the memory and the cache
coherent. For example, if a DMA writes to a memory line that is also in the cache, the line in
the cache has to be invalidated. Although the actual data is not stored in the cache, VCC
March 2001 85 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
provides a mechanism that models the performance penalty that would occur if real
coherency took place.

VCC provides a cache snooping service definition to solve the coherency problem. To
accomplish this, VCC uses a cache snooping port, of type FCFSSnooper, which works with
the FCFSBusAdapter, as shown in the following figure.

The snooping service definition works as follows:
March 2001 86 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
1. The DMA places a request on the bus to read from memory.

2. The bus forwards the request to the memory and to every snooping port.

3. The cache evaluates whether the request invalidates the line in cache, updates the
memory, or both.

This decision depends on the type of the transaction, the state of the line, and the
whether there is a hit or a miss.

If the cache line is dirty, the cache interrupts the DMA request from memory and writes the
line back to memory. At this point, the DMA request to the memory can resume.

The following table shows the behavior of a cache when it receives a snoop transaction.

The cache filters all missed transactions because they do not need any action.

Also, the cache keeps a state of {clean, dirty} on each of its lines. Clean means it is identical
to its copy in memory. Dirty means that the line is the most up-to-date and that its copy in
memory is invalid.

Some cache systems have several states representing a cache line. One such state is Invalid,
which means that the cache is older than memory. In VCC, because an invalid line must be
brought back from memory anyway, VCC removes it from the cache. The two modes of
write_invalidate and write_broadcast are supported.

Cache snoop interface for a
cache with write-back
policy only

Clean Dirty (occurs only in
write_back caches)

From State

Hit Read Clean Write line back to memory

Clean

Write 1. Write_invalidate:
Remove cache line

2. Write_broadcast: Write
to cache line, (Clean)

Write line back to memory

1. Write_invalidate: Remove
cache line

2. Write_broadcast: Write to
cache line, (Clean)

Miss Read Do nothing

Write
March 2001 87 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
The cache model does not store the data itself. It stores only a directory of references and
uses this to compute hits and misses. Because behavioral memories are mapped to
architectural memories and because sometimes architectural memories should be cached,
the cache service component cannot handle data storage.

You can extend the cache service component to make it store the data, however, this causes
significant degradation in memory usage and performance.

Behavior Timers

You use behavior timers to model the periodic or prescheduled activation of a behavioral
model. You can program and service timers from separate behavior blocks from any level of
the behavior hierarchy, but the timer references must be declared at all intervening levels of
hierarchy. Timers are not global.

When a timer expires, any leaf-level block that has an event class timer reference is activated.
The TimerExpired() function can be used to check the expiration of a timer. For more
information on the TimerExpired() function, see the information about modeling timers in
“Creating and Importing Blackbox C++ Models” in the VCC Modeling Guide. Alternatively,
you can wait on timer expiration using the embedded wait capability.

The VCC simulator defines three declarations for timers:

■ Event declaration

■ Program declaration

■ Program and event declaration

When you do a performance simulation, the communication between behaviors that
reference timers and the architecture implementation of a timer instance takes place through
timer patterns.

The following figure illustrates how you use behavior timers in the VCC environment.
March 2001 88 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
Behavior Timer Example

The process for using behavior timers is as follows:

■ Place the timer instance in your behavior diagram.

■ For each behavior to communicate with the timer, declare a timer reference on the
behavior model.

■ Associate each timer reference to a timer instance.

■ In the behavior model, write code that starts or cancels the timer, or write code to be
notified when a timer expires.

B3

B2

B1

Timer Inst

t3 Ref

t2 Ref

t1 Ref
March 2001 89 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
Place the Timer Instance

When you place a timer instance in a behavior diagram, you need to give the timer a name,
and specify whether or not the timer is repeating.

Declare the Timer Reference

In the symbol view of the behavior model, use the Timer References tab to specify the
direction and the name of the timer reference.

Associating a Timer Reference with a Timer Instance

Associate the timer reference on the behavior instance with the timer instance using the
Timer References tab of the Properties dialog for the behavior.
March 2001 90 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
Interacting with the Timer from within Your Model

In the behavior model, write code that starts or cancels the timer, or write code to be notified
when a timer expires. The following sample code determines if the t1 timer reference has
expired:

expired = t1.TimerExpired();

You can also use the following functions:

SetTimer()
StartTimer()
CancelTimer()
GetTimer()

Mapping the Timer

To map the timer instance, you need to map the timer references
March 2001 91 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
Mapped Timer Example

Each of the arrows in the diagram represents a function call. The dashed lines represent the
associations between timer reference and timer instance. The dotted lines represent the
communication pattern chosen for that timer reference.

Timer Pattern
(SWVirtualTimer)

B3

B2

B1

TimerInst

t3 Ref

TIMERCPU
RTOS

Interrupt Bus

t2 Ref

t1 Ref
March 2001 92 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
The following figure also demonstrates behavior timers in a mapping diagram. The two
behaviors share a timer instance, which is mapped to an RTOS.
March 2001 93 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
The following figure illustrates how the service definitions associated with the patterns and
architecture resources shown in the previous figure are arranged in the final simulated netlist.

When you select and highlight the timer instance, you can attach probes and breakpoints to it.

Mapping the Timer References

A timer reference is mapped to a timer pattern. The timer pattern defines services for the
event, program, and program/event declarations. These services define the behavior timer
API in terms of services provided by the architecture component to which the timer reference

Timer Programmer Timer Programmer

RTOS TImer Service

Timer Tick ISR

CPU Interrupt Controller

HW Timer

Interrupt Bus

Timer
Pattern

RTOS

CPU Interrupt Bus

HW Timer

Declaration
Function
Calls
March 2001 94 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
is mapped. In the Mapped Timer Example on page 92, the t1 ref is mapped to an RTOS,
therefore, the RTOS must provide a service to support the timer pattern.

Typically, the use of a behavior timer implies the use of a software timer. However, a behavior
timer might represent an internal timer on an ASIC. In both situations in the VCC
environment, all behaviors referencing the same timer instant must be mapped to the same
architecture resource.

See the VCC Library Reference for details on the timer services.

Software Timers

The VCC software provides a sample RTOS timer service. The implementation of the timer
service consists of two service definitions:

■ SWTimers service definition

■ TimerTickISR service definition

The SWTimers service definition implements the SWTimerDeclaration, which is used by
the patterns. The TimerTickISR loops through a list of active timers, decrements their
values, and activates any tasks whose timer has just reached zero, whenever the ISR is
activated via an interrupt. Thus, the TimerTickISR is closely tied to the SWTimers service
definition. This provides a good example of a situation where the ability of one service
definition to instantiate another service definition is required. The SWTimers service
definition needs to declare that the TimerTickISR is instantiated during simulation. The
concept of service definition instantiation is described in the VCC Modeling Guide. The
TimerTickISR also needs to use the InterruptDeclaration that is assumed to be
implemented by an interrupt controller. This allows the TimerTickISR to connect to an IRQ
on the interrupt controller.

See the VCC Library Reference for details about the SWTimers and TimerTickISR
Service Definitions

Hardware Timers Service Definition

A RTOS that offers timing services is closely tied to a hardware timer/counter. Each
microprocessor usually has its own timer that is uniquely configured. Therefore, the hardware
timer cannot be independent from the RTOS. However, all hardware timer/counters usually
share the same basic set of functions:

■ Counting based on the system clock

■ Counting based on level or edge-triggered events
March 2001 95 Product Version 2.1

VCC Architecture Evaluation Guide
Communication Between Behaviors
■ Generating interrupts on timer overruns

The RTOS generally uses the timer interrupts generated by the counter derived from the
system clock. This gives it a periodic pulse with which it can keep track of time and virtual
timers. To make the hardware as independent from the RTOS as possible, the hardware timer
model provided by the VCC software only generates periodic pulses for the RTOS and can
only be used by the RTOS.

If you have platform specific-code and you use the hardware timer explicitly (not via RTOS
calls), you can write your own timer models that can be configured using memory mapped
registers.

If there are no hardware timers in the architecture, an ASIC resource can be used.
March 2001 96 Product Version 2.1

VCC Architecture Evaluation Guide
4
Analyzing Behavior Delay

After you create and functionally simulate a behavior diagram and decide on a target
architecture, you are ready to map behavior models to architecture models. The following
shows a mapping diagram for a simple mathematical system.

Mapping is a continual refinement process in which you make some design decisions,
analyze the results, then repeat the process with different design decisions. You can work
through this process to create a more accurate performance analysis.

For example, after you decide on the hardware/software partitioning for your design, you can
do performance analyses to determine the delay of running the behavior in hardware versus
software. (A performance analysis also factors in the contention and scheduling overhead for
March 2001 97 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
running behaviors in software.) Then, you might make design decisions about the
communication between the behaviors. You can run more performance analyses based on
these decisions— these analyses can factor in bus arbitration and transfer delays between
hardware and software blocks. Based on these analyses, you might change your hardware/
software partitioning or choose a different bus model.

To add another level of refinement, you can choose the specific pattern of communication
between your behaviors. A hardware to software communication can use interrupts or polling
communication. When you do a performance analysis based on this choice, the results are
more accurate because the analysis models the correct control flow as well as shared
memory accesses and interrupt architecture.

All accesses to memory must be assigned to architecture memories. For example, you need
to decide whether the code and data sections are to reside in RAM or ROM. You also need
to decide if cache or DMA is to be involved in the memory accesses. This level of refinement
more accurately models the instruction and data fetches for software.

This chapter provides more details on how to refine your mapping diagram.

■ Creating the Mapping Diagram

■ Analyzing the Behavior Delay of a Hardware/Software Partition

■ Analyzing Bus Traffic

■ Refining Communication Patterns

■ Analyzing Memory Access

■ Analyzing Timer Accesses

Creating the Mapping Diagram

You can create a mapping diagram using the File -> New command. Next, you instantiate
your top-level behavior and architecture diagrams in the mapping diagram.

Mapping Configurations

A mapping configuration must be associated with a mapping diagram. The mapping
configuration specifies the rules for binding

■ The hierarchical behavior diagram

■ The hierarchical architecture diagram
March 2001 98 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
■ The performance and implementation models for the mapping links

Your mapping diagram can reference an existing configuration or the default system
configuration. For more information about working with configurations, see the VCC Help.

When you instantiate your top-level behavior and architecture diagrams in the mapping
diagram, the most recently used configuration associated with each is included as a sub-
configuration of your mapping configuration. Therefore, the rules for binding the hierarchical
behavior design in the mapping diagram are the same as the rules used for the hierarchical
behavior design you functionally simulated. If you change the hierarchical design of your
behavior diagram, the changes are automatically reflected in the mapping diagram.

The following figure shows a sample sub-configuration rule in the mapping configuration.

Analyzing the Behavior Delay of a Hardware/Software
Partition

You partition your design into hardware and software by mapping behaviors to architecture
instances using the Mapping Connection command. You can map a leaf-level behavior to
an RTOS or scheduler for software, or you can map the behavior to an ASIC for hardware.
Typically, you do not map testbench models because they are not part of the design to be
implemented.

The lib.cell:view
name of the
configuration file for
the architecture
diagram
March 2001 99 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
General Mapping Guidelines

Map each behavior model to a single architecture model. If a behavior needs to map to more
than one architecture model, separate the behavior into multiple behavior models so that
each one can map to a single architecture model.

If your behavior design is hierarchical, use the Mapping > Hierarchical Mapping command
to expand the next level of hierarchy for mapping.

To make your mapping diagram easier to read, use more than one copy of the same
architecture diagram in your mapping diagram. Mapping to any architecture diagram has the
same effect.

If the design is large, use the Mapping Table to assign mapping connections. See the VCC
Help for more information about the Mapping Table.

After mapping your behaviors, you need to specify the performance model for each mapping
link. VCC supports three types of behavior performance models:

■ Delay scripting language (DSL) model

■ Annotated C model

■ Annotated C++ model

Because a behavior can have multiple performance models, you must choose which
performance model is used for a particular performance analysis. The performance model
bindings are stored in the mapping configuration. The mapping configuration has a
performance viewlist, which lets you select performance views. Alternatively, you can
explicitly bind the performance view for each mapping connection.

Note: When the architecture model specifies the performance model view, as in the case of
the predefined ASIC, this specification overrides the binding in the mapping configuration.

Using the Performance Viewlist

The performance viewlist binds the performance view of each mapping connection that has
not been explicitly bound on the mapping connection itself. The performance viewlist is an
ordered list of view names specified in the mapping configuration. During performance
simulation, VCC checks the first view name in the performance viewlist against the views
provided by the behavior model. If there is a match, that performance view is used. If there is
not a match, VCC continues down the performance viewlist until a match is found.

The performance viewlist works well when all behavior models in a design have a consistent
set of view names for their performance models. If a behavior model has more than one
March 2001 100 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
performance model, the choice of performance view name can indicate different levels of
performance accuracy or analysis types (delay, power). If you apply these choices
consistently across the entire design, you can switch between levels of accuracy or analysis
types by modifying the performance viewlist.

Binding Performance Models Explicitly

You can select or change a specific performance model view for any mapping connection in
your mapping diagram. You can bind the view from the mapping diagram or from the mapping
configuration.

■ From the mapping diagram, right click the mapping connection and select Bind View.

■ With the mapping diagram active, select the Hierarchy tab to display the current
mapping configuration. Click on the mapping instance name, which displays Simulation
and Implementation entries. Click on Simulation, then click on Behavior. This lists the
behavior instances and the mapping connections in a hierarchical format. You can
choose a mapping connection and right click to access the Explain View Binding or
Edit Occur Binding commands.

See the VCC Help for more information about these commands.

Mapping Parameters

Mapping parameters are unique to the mapping between behavior and architecture models.
To display mapping parameters, right click on the appropriate mapping connection and select
Properties. Alternatively, you can use the Mapping Parameters command to see all the
parameters in the diagram.

Two types of properties are associated with mapping:

■ Link parameters of the target architecture model

■ Exported parameters of every performance model
March 2001 101 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
Link parameters are retrieved from the architecture model definition. The following figure
shows the link parameters for a behavior model mapped to an RTOS model. (The link
parameters are extracted from the RTOS model definition.)

In this example, the task_priority link parameter identifies the scheduling priority for the
mapped behavior. Refer to the library documentation of your architecture model to determine
the property settings that are appropriate for your design.

You are prompted for exported parameters for every performance view. You need to set only
those parameters used in the configuration. In the Implementation tab, there are parameters
for every implementation view. You do not need to set these implementation parameters for
performance analysis, but you must set them before exporting your design through the Links
to Implementation flow.

For information about creating link parameters and exporting parameters, refer to VCC Help
and the VCC Modeling Guide.

You are now ready to run a performance simulation of your mapped design. See Chapter 5,
“Performance Evaluation,” for more information.

Analyzing Bus Traffic

Mapping a communication wire or net in the behavior diagram to a bus in the architecture
diagram associates a delay that represents the time required to transfer data. This delay also
relates to the arbitration policy used for the bus.
March 2001 102 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
A communication wire connecting behavior models represents data transmission between
the models. Mapping connects the output port of the behavior to the bus that transmits the
data.

Depending on the arbitration model used by the bus, you might need to specify values for link
parameters. Refer to the VCC Library Reference for descriptions of link parameters
required by the VCC_bus library models.

You can also map a net to a pattern. For more information, see “Refining Communication
Patterns” on page 106.

Bus Mapping Rules

You do not need to map all communication wires. Depending on the goal of your simulation,
no mapping or implicit mapping might be acceptable.

No Mapping

By default, no communication delays are executed for unmapped communication wires. This
default might be acceptable if the goal of your simulation is to estimate the delays of executing
behaviors on various architectures without data communication delays being factored in.
Usually, you do not need to map testbench nets.

Bus

Behavior 3

Behavior 4

CPU

Scheduler

ASICV

V

March 2001 103 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
No mapping might also be appropriate if the communication is between behaviors that are
mapped to the same architecture model, as shown in the following figure. In these cases,
there is no transmission delay to estimate.

Implicit Mapping

At simulation time, you can specify implicit mapping for unmapped communication wires.
Data transmission through an unmapped communication wire between two behaviors can be
estimated if all of the following conditions are true:

■ The sender and receiver behavior models are explicitly mapped.

■ There is a unique, unambiguous bus connection between the two architecture models to
which the two behaviors are mapped.

■ If any link parameters exist for the bus model to which the communication wires are
implicitly mapped, they must have a default value that can be used. (Without explicit
mapping, there is no way for you to set link parameter values.)

Bus

Behavior 1

Behavior 2

CPU

Scheduler

V

V

ASIC

Behavior 3

V

March 2001 104 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
The following figure shows a situation where the bus being used for transmission can be
implied from the mapping of the behavior models themselves.

Implicit mapping is restrictive. You cannot specify different priority levels for communication
wires that are implicitly mapped to the same bus.

Explicit Mapping

In many situations, you must create mapping connections explicitly to accurately calculate the
performance.

If the bus has a link parameter that requires a different value for each communication wire
that is mapped to it, you must use explicit mapping.

If the communication wire between behaviors is mapped to architectures connected to more
than one bus, and either bus can be used for the same data transfer, you must map the
communication wire explicitly to determine which bus to use.

Bus

CPU

Scheduler

ASIC

Behavior 1

Behavior 2

V

V

Behavior 3

V

March 2001 105 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
The following figure shows a situation where explicit mapping is needed to unambiguously
represent the bus to use for the communication between Behavior 2 and Behavior 3.

Refining Communication Patterns

In the previous section, a communication wire is mapped to a bus, which causes bus loading.
For a more refined simulation, you can map a communication wire to a communication
pattern.

You can create the mapping explicitly by instantiating a pattern and binding the performance
view of the pattern using the Bind View command on the pattern instance. Alternatively, you
can bind a pattern by modifying the mapping configuration. You can modify the Global
Viewlist in the Configuration tab or the Edit Occur Bindings in the Hierarchy tab of the
mapping configuration.

You must bind the performance view before running performance analysis. You do not need
to bind the implementation view until you are ready to export your design through the Links
to Implementation flow. The pattern might have parameters, which you can set using the
Properties command on the instance. You need only set the parameters for the performance
view chosen.

Once the pattern instance is instantiated, you can map a behavior port to the pattern instance
using the Mapping Connection or Mapping Table Command. The Mapping Connection
command prompts you to graphically draw a link from the behavior port to the pattern
instance.

Bus 1

CPUScheduler ASIC

Bus 2

Behavior 1

Behavior 2

V

V

Behavior 3

V

V

March 2001 106 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
For large designs, you can use the mapping table to map your communications. The mapping
table lets you sort your mappings. In addition, this command supports an auto-mapping
feature, which maps all unmapped connections based on the pattern category to which the
communication belongs.

Pattern Categories

Communication patterns are categorized based on whether the start and end of the
communication path is in hardware or in software, as listed below:

■ Software-to-Hardware Communication

■ Hardware-to-Hardware Communication

■ Hardware-to-Software Communication

■ Software-to-Software Communication

❑ Intertask—Intratask communication is for two behaviors mapped to the same single
task, where protection of overwriting variables is not needed.

❑ Intratask—Intertask communication is for two behaviors mapped to the same RTOS,
where protection using masked interrupts or semaphores might be appropriate.

■ Software to Memory (SW->Memory)

■ Hardware to Memory (HW->Memory)

■ Software to Timer (SW->Timer)

■ Hardware to Timer (HW->Timer)

VCC also supports separate categories based on the type of data being transferred. Typically,
a trigger data type represents a simpler communication than the transfer of a large data
token. For example, you might choose shared memory as the default pattern for all software-
to-hardware communication. When communicating only an event, however, using shared
memory might be inefficient. You can specify that register mapped communication be used
for trigger-only port communication. VCC supports trigger and non-trigger versions of the
pattern categories.

A default pattern is assigned to each of the pattern categories. The auto mapping feature (of
the Mapping Table) maps the communication paths to the default pattern of the appropriate
pattern category. The following table lists the patterns in each category with the system
default shown in bold text. You can change the default pattern for a category using the
Mapping Patterns tab, which is available from the Tools > Options command.

For more information about each pattern, see Appendix A, “Pattern Descriptions.”
March 2001 107 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
Pattern Defaults

You can set the parameter values on the default pattern as follows.

1. Instantiate the pattern in the mapping diagram.

For example, instantiate the SharedMemorySwHw pattern in your mapping diagram.

2. Set the parameter values on this instance.

For example, set the MemoryParticipant to be "Memory1".

3. Use the Properties dialog to identify this as the pattern instance to use in auto-mapping.

With this flag set, the auto-mapper will map all the Sw->Hw (non trigger) communications
to this pattern instance, which uses the "Memory1" to read and write the shared data
value.

Pattern Category Trigger Non-Trigger

SW–>HW Register MappedSwHw Register MappedSwHw
Shared Memory

HW–>HW Direct Connect
Register MappedHwHw

Direct Connect
Register MappedHwHw
Shared Memory

HW–>SW Interrupt
Polling Register Mapped
Polling Shared Memory

Interrupt Register Mapped ,
Interrupt Shared Memory
Polling Register Mapped
Polling Shared Memory

SW–>SW
(Intertask)

Unprotected Unprotected
Semaphore Protected
Uninterruptable Protected

SW–>SW
(Intratask)

Unprotected Unprotected

HW->Memory HWDirectMemoryAccess

SW->Memory SWDirectMemoryAccess

SW->Timer SWVirtualTimer
March 2001 108 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
Mapping Parameters

Your mapping links might require some parameter values based on the pattern to which they
are mapped. You can set these parameters with the Properties command, which appears
when you right click on the mapping link. Alternatively, you can use the Mapping > Mapping
Parameters command to see all the parameters in the diagram presented in a table format.
You can sort the table by parameter value to determine which parameters are not set. You
can also sort the table by parameter name, which is useful when setting interrupt numbers.

You must set the performance properties for the mapping link before running performance
analysis. You do not need to set the implementation view parameters until you are ready to
export your design through the Links to Implementation flow.

Performance Analysis of Patterns

The performance analysis of a pattern requires that appropriate architecture services are
available in the architecture diagram. Therefore, you might need to refine your architecture
diagram before running performance analysis. For example, if you use the SharedMemory
pattern, you need to add the appropriate RAM and ROM to your architecture diagram.
Another example is the interrupt pattern, which requires an appropriate interrupt bus and an
interrupt controller.

Finally, patterns require addresses to transfer data across an arbitrated bus. Therefore, you
need to assign the bus range on your data bus and address sub-ranges on the ports of each
architecture instance connected to the bus. You can set the offsets for each communication
path as a parameter on the mapping link, or you can use the Address Allocator command
to automatically assign unique offsets.

Note: If you bind the fixed_pattern view for your pattern, VCC models only the loading of
the bus specified by the simulation bus parameter—It does not use the architecture services.

Analyzing Memory Access

You can perform further mapping refinement to accurately model the memory accesses of
your system. You can model

■ Instruction and data fetches for behaviors mapped to software

■ Memory accesses due to behavior memory references

■ Memory transfers handled by caches and DMAs
March 2001 109 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
Instruction and Data Fetch Analysis

In order to model instruction and data fetches, you need to map your memory sections to
architecture memories. For details about mapping your memory sections, see “Delays Based
on Memory Accesses” on page 34.

The accuracy of the simulation is controllable by the DataReadMode, DataWriteMode, and
InstructionFetchMode parameters on the CPUMemoryAccess service of your processor.

■ DataReadMode controls the modeling of data reads (load)

■ DataWriteMode controls the modeling of data writes (store)

■ InstructionFetchMode controls the modeling of instruction fetches

You can set these parameters to None, BusTraffic, or BusTrafficAndTaskDelay. If you
specify None, this feature is turned off. BusTraffic indicates that the appropriate bus is
loaded with traffic, which causes contention on the bus. BusTrafficAndTaskDelay indicates
that the appropriate bus is loaded with traffic and the task is blocked until the memory access
is complete.

The bus arbiter models the performance impact of the bus request. The bus adapter models
the performance impact of transferring the data across the bus. The architecture memory
models the performance impact of the memory read or write. For example, VCC provides a
VCC_Memory.SimpleMemory cell, which has performance parameters for specifying the
setup, read, and write latencies.

Software Estimation

Behavior models written in Whitebox C are automatically annotated with instruction delays
and optional instruction and data fetches during performance simulation to model the
execution time of software on a processor. When you turn on instruction and data fetching,
the annotated behavioral model communicates directly with the Memory Access service. This
in turn initiates bus transactions.

For more information about annotated C models, refer to the VCC Modeling Guide.

Performance Analysis of Behavior Memories

In order to model behavior memory references, you need to map your behavior memory to
an architecture memory and map your memory references to memory patterns. The default
pattern is DirectMemoryAccess, which reads and writes directly to the architecture
memory. See “Mapping the Memory Instance” on page 72 for more details.
March 2001 110 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
You can control the accuracy of the simulation using the CommunicationMode parameter
on the CPUMemoryAccess service of your processor. You can set this parameter value to
None, BusTraffic, or BusTrafficAndTaskDelay. If you specify None, this feature is turned
off. BusTraffic indicates that the appropriate bus is loaded with traffic, which causes
contention on the bus. BusTrafficAndTaskDelay indicates that the appropriate bus is loaded
with traffic and the task is blocked until the memory access is complete.

The bus arbiter models the performance impact of the bus request. The bus adapter models
the performance impact of transferring the data across the bus. The architecture memory
models the performance impact of the memory read or write. For example, VCC provides a
VCC_Memory.SimpleMemory cell, which has performance parameters for specifying the
setup, read, and write latencies.

Cache Analysis

You can refine your design to model the impact of caches. The sample cache service
provided by VCC supports modeling the cache

■ As a statistical hit or miss ratio

■ By tracking the addresses referenced

You can control this using the fixHitRatio boolean parameter on the cache service. In order
to model the cache, you need to refine your architecture diagram to include the cache.

Architecture Diagram Refinements

The section describes several sample architecture diagram refinements using cache.
March 2001 111 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
Cache on a Processor with Dedicated Memory

The following shows a cache on a processor with dedicated memory.

Cache on a Processor with External Memory

The following shows a cache on a processor with external memory. Because the DMA can
write to the memory, the lines in the cache might need to be invalidated. In order to avoid this
cache coherency, the cache must monitor the bus (or snoop) to get information about write
transactions to the memory. You can model snooping by adding a snooper service to the bus
port of the cache. Also, the databus must support a snooping cycle. For more details on
snooping, see the information about the FCFSSnooper service in the VCC Library
Reference.

CPU
L1

Cache Memory

Dedicated Bus

CPU
L1

Cache
Memory

DMA

BUS
March 2001 112 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
Two-Level Cache

The following shows a two-level cache. VCC lets you model two- level caches by physically
connecting the caches in a serial fashion. If the L1 cache has a miss, the request is handled
by the L2 cache. If the L2 cache has a miss, the request is handled by the memory.

Separate Instruction/Data Caches

VCC supports separate data and instruction fetches when you use the
CPUMemoryAccessSplitId service on your processor. This service sends address
requests to the data or instruction port based on the type of the memory segment. If the code
segment is of type Data, the service sends it to the port specified by the DataBus parameter.
If the code segment is of type Code, the service sends it to the port specified by the

MemoryL2
Cache

L1
Cache

CPU
March 2001 113 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
InstructionBus parameter. For more information on the CPUMemoryAccessSplitID
service, see the VCC Library Reference.

Cache and Multi-Ported RAM

A multiported memory has multiple independent sets of address and data connections,
allowing multiple independent memory accesses to proceed in parallel. The most common
type of multiported memory is the dual-ported variety, which provides two simultaneous
accesses. The address ranges of the ports of a multiported memory are the same, meaning
that the same memory location can be accessed through either one of the ports.

BUS

CPUMemory
AccessSplitID

Inst
Cache

Data
Cache

Memory
March 2001 114 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
The memory service definition provided by VCC is generic and can be bound to a memory
architectural resource with more than one port. The following figure illustrates a dual-ported
memory.

The ports in a VCC architecture are given unique IDs which are used to route transactions
from source to destination through a network of buses, bridges, and caches.

The memory performance model does not take into account the effects of arbitration resulting
from the case in which two requests on two ports are referencing the same memory location.
This is modeled by delaying one request until the other request on the port is finished.

Cache Restrictions

When you are modeling caches, you must follow these rules.

■ A cache can only be divided into a number of lines that is a power of 2.

■ All the memories that a cache services must also be divided into a number of lines that
is a power of 2, where the line size of all the memories, and the cache that services them,
is the same.

BUS 1

BUS 2

CPU

Memory

Cache

ASIC

Port 1

Port 2
March 2001 115 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
■ A memory that is serviced by a cache will be cached in its entirety. No part of that
memory may be marked as un-cachable. If this feature is needed, divide the memory into
two memory categories, one that is cachable and one that is not.

■ The cache model will not store the actual data. Only a directory of references that are
presently in cache will be stored and used to compute hits and misses. Because
behavioral memories will be mapped to architectural memories, and because there
might be cases in which the latter should be cached, the present service definition
cannot handle this. You can extend the cache service definition to make it store data.
However, this causes significant degradation in memory usage and performance.

■ Cache coherency in the presence of two-level caches is not supported.

■ Cache coherency in the presence of multiple caches, where a cached line could exist in
several caches, is not supported.
March 2001 116 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
Definition-Declaration Interaction

The following diagram illustrates how the service definitions and service declarations used by
a cache interact in the VCC environment.

Analyzing Timer Accesses

You can further refine your design to accurately model timer accesses. This includes
modeling

■ The overhead of managing the software timers

busRequest()

busIndication()

busIndication()

busRequest()

SlaveAccess()
arbiterRelease()arbiterRequest()

busIndication()

ExecBusTransc()

CPUMemoryAccess

DedicatedBusAdapter

FCFSSlaveAdapter

Cache

FCFSBusAdapter

FCFSArbiter FCFSSlaveAdapter

SimpleMemoryServiceDefinition
March 2001 117 Product Version 2.1

VCC Architecture Evaluation Guide
Analyzing Behavior Delay
■ The impact of SW timer interrupts on running tasks

■ The impact of the HW timer generating the interrupt

In order to refine your design to model timer accesses, you need to map your behavior timer
references to timer patterns, thus refining your architecture to support timers. For details
about mapping behavior timer references, see “Mapping the Timer” on page 91.

To refine your architecture diagram, you need to add a SWTimer service to your RTOS to
manage the software timers. You can control the timer resolution and you can control
whether or not to model the generation of the interrupt from a hardware timer. The
UseHWTimer boolean parameter specifies whether the timer service schedules itself, or
whether it will respond to an interrupt service routine that is triggered by a hardware timer.
Setting this value will accurately model the traffic on the interrupt bus and the impact of calling
the interrupt service routine for the timer tick.

If you set the UseHWTimer parameter on the RTOS to TRUE, you should also refine your
architecture diagram to include a hardware timer connected to the interrupt bus. In this case,
be sure that the UseHWTimer boolean on the hardware timer is also set to TRUE. You
should set these two parameters consistently. It is recommended that you export these two
parameters to the architecture diagram and set the parameter value once.
March 2001 118 Product Version 2.1

VCC Architecture Evaluation Guide
5
Performance Evaluation

Performance evaluation lets you analyze statistical data about the execution of your behavior
on a specific architecture.

You can run two types of simulation in the VCC environment:

■ Functional simulation lets you verify the integrity of your behavior design without the
influence of architecture constraints or performance model delays.

■ Performance simulation runs from the mapping diagram and lets you

❑ Verify the performance of the behaviors on an architecture

❑ Simulate processing and communication delays and resource contention through
performance models

You can run simulations in three different ways:

■ Interactive mode simulates in an active session and is used for debugging. Progress
messages, error messages, and display object outputs are displayed as they occur.

■ Background mode simulates in the background, allowing you to continue work in the
active VCC session.

■ Remote simulation mode lets you use a remote machine to process the simulation.

Simulating the Mapping Diagram

A performance simulation is run from your mapping diagram. It follows the same process as
a functional simulation. This section provides details about setting up, initializing, running,
and debugging a performance simulation.

Setting Up the Simulation

After opening a simulation session, you need to set the performance simulation option, make
changes to the parameter values, set breakpoints for debugging, add probes to collect data
March 2001 119 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
for analysis, verify the simulation settings, and check the mapping configuration specified for
this diagram.

■ Open a new simulation session using your mapping diagram.

■ Change parameter values

To display the top-level design parameters, select the Params tab in the Simulation
window. Make any parameter changes. These parameter values are valid for the
simulation session only. The parameter values in the actual diagrams are not modified.

Make sure that all performance properties on mapping connections are set to
appropriate values. There are often no default values for these properties. Properties
that are not set cause errors during the initialization phase of your simulation.

Note: You only need to set performance properties. Implementation properties are not
needed for simulation.

■ Set breakpoints for debugging

For debugging your mapping diagram, set breakpoints to halt the simulation, and use
interactive mode to step through segments of your diagram. Refer to VCC Help for
details on setting breakpoints in your behavior design.

■ Set Probes and Display Objects

In the behavior portion of your mapping diagram, you can set probes on ports, viewports,
memory instances, and timer instances. Viewports on the models define the data to be
collected and the presentation style of summaries and graphic presentations. Analysis
data is collected and saved for only those viewports that have probes set for them. Refer
to VCC Help for details about setting probes on behavior models.

To compare the results of the functional simulation with the performance simulation,
probe the same ports and viewports on behavior models as you probed in your functional
simulation.

Probes on architecture models provide a view of the processing activity. When you add
a probe to an architecture primitive, you select the viewport from a list of available
viewports on each of the services associated with the architecture primitive.

Probes cannot be set for ports in an architecture diagram. However, probes can be set
on viewports associated with any architectural services attached to those ports.

You can also set display objects, such as displays, gauges, and charts, on viewports, to
provide data while your simulation is in progress. Refer to VCC Help for details on
setting probes and display objects on behavior models and architecture models.

■ Check Simulation Settings
March 2001 120 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
Simulation settings specify the type of simulation and various run options. Make sure that
the simulation type is set to performance. Specify the end time for the simulation.

Once you have debugged your mapping diagram, you can use background mode for
further simulation runs. In background mode, progress messages let you track the status
of your simulation. Note that in background mode, any breakpoints and display objects
are disabled.

By default, simulation results are saved as another view in the cell where your mapping
diagram is located. You can specify the name of the results directory for each simulation
and maintain results from several simulation runs for later comparison.

■ Save the simulation session.

Initializing and Running the Simulation

1. In interactive mode, select Analysis > Initialize to start the simulation.

During the initialization phase, a netlist is created that represents the combination of the
mapped behavior, architecture and performance models specified in your mapping
diagram. The netlist created in this phase provides the input for your simulation.

The Simulator Output area displays progress and error messages.

2. When the initialization phase completes, select Analysis > Continue to simulate the
mapping diagram.

The simulation run time is updated in the status bar at the bottom right side of the
simulation window.

If no breakpoints are set, the simulation proceeds until the end time specified in your
simulation settings. A message confirms that the simulation completed successfully.

If you set breakpoints for debugging, simulation progresses to the first breakpoint
encountered. In your diagram, the breakpoint where simulation paused is highlighted in
red. Select Analysis > Continue to resume processing to the next breakpoint. Refer to
VCC Help for detailed information about using breakpoints to step through a simulation.

Debugging Simulation Problems

Most errors occur during the initialization phase of the simulation. The following list describes
common problems and suggested corrections.

■ Null value for a parameter
March 2001 121 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
Usually, a link parameter generates this error. Link parameters often do not have default
values and must be set explicitly. The context of the message identifies which parameter
has no value specified.

Note: You can use the Mapping Parameters command, then sort by value to bring all
the null values to the top of the list.

■ View does not exist

❑ The mapping configuration specifies the performance views used by the mapping
process during initialization. Verify that the Performance Viewlist or Global Viewlist
contain the appropriate view names and that they are in the proper sequence.

❑ If a diagram has been copied from another location, the current netlist might not
have the appropriate compiled simulation objects. Update these objects by using the
Analysis > Settings command and setting the Compile option to Recompile
Design.

■ Out-of-date netlist

Any changes you have made to parameter values or to your mapping are not reflected
in the netlist. Regenerate the code in your mapping diagram.

■ Syntax error

After mapping has been completed, individual functional models and delay script models
are compiled into a simulation model, and C code in additional files is parsed. Syntax
errors are displayed in the output area and written to the error.txt file. To limit the
display in the output window, right click in the output area and choose Output Filters to
select the types of errors, if any, you want displayed.

Syntax error messages provide the filename and line number where the error occurs.
During the initialization phase, syntax errors are usually in your scripted delay
performance models. (Behavior model syntax is parsed before functional simulation.
Architecture model syntax is parsed when the code is generated.)

A syntax error can generate other errors in subsequent processes, so check the first set
of errors displayed in the output window. After the syntax has been corrected, regenerate
the code and rerun the initialization process to see if other errors recur. If you double click
on the error, the location of the error is highlighted in the mapping diagram.

■ Inconsistent interface between views of a cell

All views of a cell must have a consistent set of ports, parameters, memory, and timer
references. Verify that the behavior model (and symbol) have consistent interfaces.

■ Service declaration is not bound to a service definition
March 2001 122 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
This error message is typically generated by a performance view of an architecture
instance. The performance view should specify a service definition for each of the
service declarations in the architecture symbol. The context of the error message
identifies the service declaration that is not bound and the architecture instance that is
missing the binding. To fix this error, double click on the error message to highlight the
instance. Use the Edit View command on the highlighted architecture instance and
check the services in the Service Bindings tab of the Properties dialog.

■ Unable to resolve a service binding

This error message is typically generated by a performance view of an architecture
instance. The performance view specifies a list of service definitions. Each of these
service definitions uses other service declarations. These other service declarations
must be supplied by the architecture instance itself or by the architecture instances to
which it is connected. The context of the error message identifies the service declaration
that is required by a specific service definition on a specific architecture instance. To fix
this error, double click on the error message to highlight the instance that requires this
service. First verify that this service declaration is used by the service definition, then
verify that the architecture instance or the architecture models to which the instance is
connected supports this service declaration. You can use the Service Declarations tab
on the Properties command to see the services supported by this instance and the
connected instances.

Exploring the Mapping Diagram

Once the mapping diagram has been debugged and you have analyzed your output and
made corrections, you can run further simulations to sweep particular parameters with
multiple values. In order to sweep parameters, you need to export parameters up to the
mapping diagram, then set the parameter values in the simulation session.

Exporting Parameters

Behavior and architecture parameters can be exported to your mapping diagram so that you
can modify or sweep parameter values at simulation time. Exporting parameters lets you
explore variations in model characteristics without revising your original diagrams.

In the following figure, a behavior model (the Decoder) is selected, and the Parameters tab of
the Properties dialog is displayed. You might want to export one of the parameters, for
March 2001 123 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
example, the nStates parameter, so that you can explore the impact of changing the number
of states.

Existing parameters for the instantiated model are displayed here. If the value of a parameter
can be modified, you can set the value to a constant, an expression, or a parameter name.

To set the value to a parameter, you first need to create a parameter in the next level of
hierarchy. To create the export parameter, select the Properties menu from the background
of the current display to access the parameters tab of the higher level of hierarchy. For
example, right click in the background area of the behavior diagram in which the Decoder is
instantiated.
March 2001 124 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
In the following figure, a parameter named nStatesParm of type integer is created in the
behavior diagram containing the Decoder.

You then set the value of the lower-level parameter to the new diagram parameter name.

In this example, you would return to the Properties display of the Decoder behavior model
and set the value of the nstates parameter to the newly created behavior diagram
parameter nStatesParm .

Because all views of a cell must have matching interfaces, you need to add the
nStatesParm parameter to the symbol view of the behavior diagram.

To export the parameter to the mapping diagram, you need to export it up through each level
of the hierarchy to the top-level behavior diagram. The following figure of a hypothetical
March 2001 125 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
mapping diagram illustrates how to export parameters from the behavior and architecture
diagrams to a mapping diagram.

All mapping diagram parameters are automatically displayed as simulation parameters
during a performance simulation. By using simulation parameters, you can modify or sweep
parameter values for different simulation runs without changing your original diagrams.

Sweeping Parameters

You can run simulations with different values for parameters by specifying sweep values for
parameters in the simulation session. You use the Expression Builder to change the current
value of a parameter to sweep across a list of values. For example, you might set the
nStatesParam parameter to the values of 5 - 8. This will generate 4 simulations, with the
nStatesParam set to 5 for the first iteration, 6 for the second iteration, and so on. Refer to

To export a behavior diagram parameter:

1. Right click in an empty area of the mapping
diagram and create a parameter.

2. Right click in an empty area of the behavior diagram, and
set the value of the behavior parameter to the new
parameter name.

To export an architecture diagram parameter:

1. Right click in an empty area of the mapping
diagram and create a parameter.

2. Right click in an empty area of the architecture
diagram, and set the value of the architecture
parameter to the new parameter name.

Mapping diagram
March 2001 126 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
VCC Help for details on accessing and using the Expression Builder for specifying sweep
values.

In the simulation settings form, select All Iterations. With this selection, the simulation
automatically runs in background mode. You can also run the sweep simulation on a remote
server. The simulator graphs the progress of each sweep. Refer to VCC Help for details on
running in background mode or on a remote server.

Analyzing Simulation Results

How you analyze a performance simulation depends on the goal of the simulation, your
mapping diagram, and any problems you are encountering.

Scheduling, prioritizing, and delaying functions introduce timing consequences into your
design. Probing the appropriate viewports in your architecture models can capture data that
identifies inadequacies in prioritizing functions and processor or bus speeds.

Use the Visualize analysis tool to build summary lists, Gantt charts, and 2D charts from your
results file data. Refer to Visualize Help for details about displaying results.

Using Model Viewports

Viewports provide access to the internal state variables of a behavior primitive, behavior
memory, or architecture service. Probes can be attached to these viewports to save data for
later analysis. The statistics and data provided by viewports can be displayed in various
formats through the Visualize tool.

This section provides details about the viewports associated with bus and scheduler models
provided in the VCC environment. For details about viewports for other models, check the
library documentation for your model libraries.

Probes on Services to Check Communication

You can attach probes to viewports of services associated with an architecture instance to
analyze the activity of the architecture instance. Refer to the VCC Library Reference for
descriptions of the viewports available on services in the VCC libraries. The following
sections provide examples of viewports on buses and schedulers provided in the VCC
libraries.
March 2001 127 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
Bus Activity

You can check the overall utilization of the FCFSBus in the VCC_Bus library by adding a
probe to the SummaryStats viewport on the busArbiter service of the bus. You can retrieve
overall utilization statistics or identify queue overruns by reviewing the results obtained from
this viewport. From this data, you can determine if the bus speed is adequate, if a particular
data path is controlling bus activity, or if token transfers are being lost.

To continue this example, you can attach a BusModelStatsProbe from the VCC_Test library
to the SummaryStats viewport. This probe generates two tables of data that can be
analyzed in a Visualize table chart. The first table displays activity for the entire bus, and the
second table displays activity for each communication wire mapped to the bus. Refer to the
“VCC_Architecture Services Library” chapter in the VCC Library Reference Guide for
more information about BusModelSummaryStats.

Only one transaction per artifact (only one message between a particular source and
destination) should be active at any time. If a source is sending transactions faster than
transactions are arriving at a destination, the statistics will be inaccurate.

To analyze the activity of a particular bus master, you can probe the busAdapter service on
your bus master. For example, the busAdapter service of the SimpleCPU in the VCC_CPU
library has two viewports: summary statistics and Gantt chart.

You can attach a StatsCollectorProbe to the summaryStats viewport to collect the statistics
of the bus transfers. You can also attach the FCFSBusAdapterGanttProbe from the VCC_Test
library on the GanttChart viewport to see the timeline progression of the bus requests. The
following figure shows the state model for the bus adapter:
March 2001 128 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
Scheduler Activity

You can also analyze statistics on the activity of a scheduler. From this data, you can
determine the efficiency in processing tasks, excessive suspensions or aborts of tasks, and
excessive wait times.

For example, you can probe the schedInit service of the MultipleServiceRTOS in the
VCC_RTOS library. This service has two viewports, SchedulerSummaryStats and
GanttChart. You can add a StatsCollectorProbe to the summary statistics viewports to
analyze the overall scheduler activity or the activity on each particular behavior model
mapped to the RTOS.

The following table describes the different fields produced by the statistics viewports on this
scheduler:

Waiting

Idle

Owner

Preempting

TransactionDone (queueSize == 0)

TransactionDone
(queueSize == 0)

TransactionDone (queueSize !=0)
|| TransferDone

ArbiterPreempt ||
RequestorPreempt

Grant

TransactionDone
(queueSize !=0)

Request

RequestorPreempt
(queueSize ==0)
March 2001 129 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
You can also add a SchedulerGanttProbe to the GanttChart viewport to see the activations,
deactivations, and the beginnings and ends of the reactions of each task assigned to the
selected scheduler.

Scheduler Statistic Description

name Name of scheduler or task.

priority Priority of a scheduler or a task.

number_activations Number of times that a scheduler or task is activated.

number_deactivations Number of times a scheduler is deactivated.

number_starts Number of times a task or a scheduler enters the running state.
A task or a scheduler can be in a running or suspended state
during its reaction.

number_finishes Number of times a task or scheduler finishes reaction.

number_suspends Number of times a task or a scheduler enters a suspended
state. A task or a scheduler can be in a running or suspended
state during its reaction.

number_resumes Number of times a task or a scheduler resumes running after
being suspended.

mean_activation_time Mean time a task or a scheduler spends waiting to run. More
specifically, this is the mean time between a task or a
scheduler’s activation and deactivation.

mean_reaction_time Mean time a task or a scheduler spends reacting. A task or a
scheduler can be in a running state or a suspended state during
its reaction. This does not include the start and finish overhead
of the parent scheduler.

mean_run_time Mean time a task or a scheduler spends in the run state. A task
or a scheduler can be in a running or a suspended state during
its reaction. This does not include the time spent in the
suspended state during a reaction.

mean_utilization Percentage of the total time that a task or scheduler spends in
the run state.
March 2001 130 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
Simulation Messages

Simulation details, errors, and warnings are displayed in the output area of the simulation
window. With the Output > Filter command, you can specify which category of messages
you want displayed.

This information is also written to files in the results view (debug N.txt , info N.txt ,
warn N.txt , and error N.txt). In these filminess, N represents the sweep number. For a
single simulation run, the number is 0. For a sweep simulation, separate files are created for
each sweep, and N represents the iteration number. You can access these files with a text
editor from the results directory of your library cellview.

Comparing Functional and Performance Simulation Results

If one of the goals of your simulation is to maintain consistent results with your functional
simulation, you can compare the output from your performance simulation to the output from
your previous functional simulation. To make this comparison, set probes on the same inputs
and outputs used in your functional simulation.

If results are not consistent, the delays incurred in the performance simulation might be
changing the sequence of reactions or ports might be receiving input faster than the reaction
can be activated. Compare results only at meaningful points for your design. Use the
Visualize tool to review the processing details collected by your probes. You can also set
display objects to watch values change while the simulation is in progress.

debug Contains information about the progress of the simulation. It is a more
verbose version of info and can be useful in tracking a problem.

info Provides a textual description of the simulation process and outcome. It
includes such information as the scheduler tree and scheduler statistics that
can be useful in analyzing results. Messages printed from within whitebox C
and blackbox C++ models are included in this category.

warn Identifies warnings issued during simulation. Warnings do not have to be
corrected to proceed with the simulation. You should review the problems
noted to see if they affect your results.

error Identifies more severe errors that must be corrected for the simulation to run
successfully. For debugging, the file also provides the simulation time when
the error occurred and the location of the problem.
March 2001 131 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
Analyzing Testbench Results

A watchdog timer in the testbench can help assess whether reactions were processed in a
reasonable length of time. By setting up your own analysis mechanism in the testbench, you
can collect statistics for your diagram. By probing results of input and output ports in the
testbench, for example, you can calculate latency of each output received and graph the
results. Refer to Visualize Help for details about displaying charts.

Analyzing Table Charts

You can quickly scan a table chart for expected results, errors, and inconsistencies.
Depending on the goal of your simulation trials, certain fields of data or statistics should be
of greater interest than others, and you can view a series of results by scanning a column in
the display. You can also use table charts to provide summaries of statistics or utilization data.

For example, with bus models from the VCC_Bus library, you can retrieve overall utilization
statistics or identify queuing overruns by reviewing the results in the Bus Model Summary
Statistics chart. From this data, you can determine if the bus speed is adequate, if a particular
data path is controlling bus activity, or if token transfers are being lost.

If you need more detail about a specific data path, you can review the Bus Artifact Summary
Statistics chart for that data path. This chart provides details on the number of attempted and
successful transfers, mean transfer rates, and a ratio of utilization of this data path versus the
entire bus. From this data, you can determine if the bus can service this data path efficiently
or if changing task priorities or remapping might improve transfer rates or reduce transfer
failures.

Analyzing Gantt Charts

Gantt charts provide an in-depth analysis of the activation and reaction activity of a model.
Gantt charts clearly represent the scheduling and processing sequences of multiple tasks.
Table charts and Gantt charts used in combination let you identify a problem area from
summary data and then zoom in on a display of the precise activities that are involved.

For example, the Gantt Chart viewport associated with the VCC scheduler and RTOS models
in the VCC_RTOS library provides a graphic presentation of behavior activation, reaction,
suspension, and completion for a particular scheduler.
March 2001 132 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
The following figure represents a compressed illustration of the type of output this viewport
provides. (Note that the color of the interrupt indicators in this and other figures has been
changed for readability in this document.)

The activation row shows the activation and deactivation of each task. The reaction row
identifies when each reaction starts and ends.

This output segment depicts the type of activity you see on a hardware scheduler that has
three interrupt service routines and an RTOS assigned to it. The three service routines have
higher priorities than the RTOS.

The activity shows that Interrupt 3 and Interrupt 1 have been processed. The reaction of the
RTOS is suspended to accommodate processing Interrupt 2. Refer to Visualize Help for
details about zooming in and maneuvering within the display window to view output at various
levels of detail.

The RTOS in this example is a nested scheduler and is considered another task running on
the hardware scheduler. For a similar display of the RTOS activity, you set a Gantt probe on

**

*

*

*

Interrupt 1
Reaction
Activation

Architecture RTOS1
Reaction
Activation

Interrupt 2
Reaction
Activation

Interrupt 3
Reaction
Activation

*

*

*

March 2001 133 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
the RTOS and chart activations and preemptions of the tasks assigned to it, as shown in the
following figure.

Comparing the timelines displayed at the top of two Gantt charts lets you coordinate multiple
displays. For example, the display of a primary scheduler can be synchronized with the
display of a nested scheduler to analyze the interactions between the two schedulers.

The following figures represent events that can be identified from a Gantt chart display.

■ Inappropriate task priority

The Gantt chart of scheduler activity clearly identifies the sequence in which behaviors
are activated and when a reaction begins. From this information, you can identify
behaviors that are processed in the wrong sequence.

Behavior 2B
Reaction
Activation

Behavior 3B
Reaction
Activation

Behavior 4B
Reaction
Activation

**
Behavior 1B

Reaction
Activation

* *

*

*

*

*

**

**

* *

**
March 2001 134 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
For example, in the following figure, Behavior 2 is activated while Behavior 1 is in
progress, but Behavior 2 does not run until Behavior 3 has completed.

Depending on your design, this might indicate that the priorities of Behavior 2 and
Behavior 3 are set inappropriately, and that these tasks are not being run in the
appropriate sequence. If so, adjust priorities or use a first-come-first-served scheduler to
maintain the proper sequence.

■ Task starvation

Behavior 3
Reaction
Activation

Behavior 2
Reaction
Activation

**
Behavior 1

Reaction
Activation

**

**

**

**

**
March 2001 135 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
Throughout the processing cycle represented in the following figure, Behavior 5 is never
activated. Also, Behavior 3 is activated but its reaction never begins. The relationship of
these two events might be significant.

For example, if Behavior 3 feeds input to Behavior 5, the cause of the task starvation is
that Behavior 3 has not processed the input for Behavior 5. Going further, the reason for
this situation might be that the priority for Behavior 3 is set too low or that the CPU speed
is too slow to allow reasonable throughput of higher priority tasks.

■ Overwritten ports

In the following example, three activations are received. The first reaction begins and
uses the data from the first activation. Two more activations occur before the second
reaction begins. When a task begins reacting, it reacts using the latest input. In this
example, if the behavior has only one input port, the input from the second activation is
being overwritten and is lost.

** *

*

*

Behavior 1
Reaction
Activation

Behavior 2
Reaction
Activation

Behavior 3
Reaction
Activation

Behavior 4
Reaction
Activation

*

*

*

* * *

**

**

Behavior 5
Reaction
Activation

Behavior 1
Reaction
Activation

** * **

March 2001 136 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
Solutions might be to change the priority of Behavior 1 (or of the other tasks assigned to
the scheduler), to use a faster processor, or, if multiple processors are available, to
change the mapping of various behaviors to balance the processing load.

If a behavior model has more than one input port, the second and third activations could
be a result of data being received on these other ports. An activation occurs when one
port receives data. In this case, multiple activations might not mean that data is being
overwritten. You need to determine what ports are being activated and whether this is an
acceptable situation.
March 2001 137 Product Version 2.1

VCC Architecture Evaluation Guide
Performance Evaluation
March 2001 138 Product Version 2.1

VCC Architecture Evaluation Guide
6
Mapping Refinement

Once you have identified an architecture that meets your design needs, you need to refine
communication and data transfer to accommodate the architecture. One example of a
refinement is a data refinement.

You add architecture-specific behavior to your mapping diagram through the refinement
process. By doing the refinement in the mapping view, you preserve the original behavior
model and keep it independent from the influence of a specific architecture. This way, you can
use the behavior model in other designs.

This chapter demonstrates the refinement process using the example of a protocol down
converter.

Protocol Down Converter Refinement

The refinement for the protocol down converter converts a high-level, abstract data structure
to a set of tokens representing actual data on the bus.
March 2001 139 Product Version 2.1

VCC Architecture Evaluation Guide
Mapping Refinement
The original behavior diagram processes input through a complex adder and multiplier, as
shown in the following figure.

The two behaviors are implemented on different architecture models. The data, therefore,
must be transferred from the output port of the adder to the input port of the multiplier across
a bus.
March 2001 140 Product Version 2.1

VCC Architecture Evaluation Guide
Mapping Refinement
The following figure shows the mapping diagram of the original behavior design implemented
on the described architecture diagram.

The size of the data bus in the selected architecture is smaller than the token being
transferred. A refinement is needed to convert the token to multiple 16-bit packets for
transmission across the bus. The packets then need to be converted back to the original
token.

Creating a Refinement Model

In VCC, you can add the additional behavior required by the mapping using the refinement
options available through the Mapping Diagram Editor. This approach keeps the behavior
diagram free of architectural influences.

You create the refinement behavior using the behavior diagram editor. You can instantiate one
or more behavior models in the behavior diagram. The refinement must have a single input
port and a single output port. The datatype of these ports must match the datatype of the port
being refined. Many refinements involve control-dominated processing for which the State

The architecture diagram, consisting of a
CPU, scheduler, two ASICs, and two 16-bit
buses

The top-level behavior model

The hierarchical behavior model consisting of a
complex adder and complex multiplier
March 2001 141 Product Version 2.1

VCC Architecture Evaluation Guide
Mapping Refinement
Transition Diagram (STD) Editor is well-suited. You can also develop or import these behavior
models using any of the methods available in VCC. For information about using the State
Transition Diagram Editor, refer to VCC Help.

Performance models are needed for each of the behaviors in the refinement cellview. You
create the performance model, as with other behavior models, by choosing the type of
performance model and setting the appropriate parameters. For more information, see
Chapter 2, “Performance Models.”

The following figure shows the refinement of the protocol down converter.

The protocol_down_converter is a hierarchical behavior model. It consists of the
protocol_down_control and the protocol_down_data_path primitives. The
protocol_down_control model is implemented as a State Transition Diagram. The

protocol_down_converter
protocol_up_converter

protocol_down
control

protocol_down
data_path
March 2001 142 Product Version 2.1

VCC Architecture Evaluation Guide
Mapping Refinement
protocol_down_data_path and the protocol_up_converter models are
implemented as Blackbox C++ behavior models.

The following figure shows the STD diagram for protocol_down_control . It provides an
error routine that retries a packet transfer if an out-of-sequence data packet is received.

In this STD diagram, four states control and verify the down conversion:

Got Token The Got Token state is activated when a token is received. The token is
passed to the protocol_down_data_path function where the token is
broken down into packets. Each packet is numbered so that its sequence
can be monitored. As Got Token receives each packet from the data path, it
sends the packet to the protocol_up_converter model and passes
control to the Got Chunk state.

Got Token
Idle

Got Chunk

Error

Enabled(dataChunk) =>
out_dataChunk = dataChunk

Enabled(got_it) =>
Next_DataChunk

Enabled(done) => reset = 1

Enabled(error) => Reset = 1

Enabled(dataChunk) =>
out_dataChunk = dataChunk

Enabled(error) => reset = 1

Enabled(token) =>
out_token = token
March 2001 143 Product Version 2.1

VCC Architecture Evaluation Guide
Mapping Refinement
Instantiating and Mapping a Refinement

To instantiate a behavior refinement, select the input port or output port of the communication
wire where the refinement is to be placed. (To avoid problems with fan-out, use the output port
of the communication wire.) Use the Mapping > Mapping Refinement command, and
select your behavior refinement cellview. Then place the cellview in your mapping diagram.

Each behavior model in the refinement behavior diagram is then mapped to an appropriate
architecture model, as shown in the following figure. If the refinement is hierarchical, use the

Got Chunk The Got Chunk state is activated when a data packet from the data path is
sent to the protocol_up_converter . The protocol_up_converter
acknowledges receipt of the packet and confirms that it is in the proper
sequence.

If the protocol_up_converter confirms that the packet has been
received and is in the correct sequence, control returns to the Got Token
state to await the next packet from the data path.

If an error message is received from the protocol_up_converter ,
control passes to the Error state.

Error The Error state determines if this is the first retry for the packet.

If so, control returns to the Got Token state for a retransmission of the same
packet.

If the retransmission is not successful, reconstructing the packet is
considered impossible, and control passes to the Idle state.

Idle The Idle state is activated when the token is reconstructed correctly and the
protocol_up_converter sends a “done” signal, or if the Error state has
determined that a token cannot be reconstructed.

If another token is ready to be processed, control passes to the Got Token
state to begin transferring a new token.

If not, control remains in the Idle state until a new token is received.
March 2001 144 Product Version 2.1

VCC Architecture Evaluation Guide
Mapping Refinement
Mappping > Hierarchical Mapping command to expand the refinement, then map the
models within it.

The protocol_down_data_path primitive and the protocol_down_control primitive
are mapped to the CPU. The protocol_up_converter refinement model is mapped to
ASIC1.

You need to bind a performance view for each of these mapping links. Refer to Chapter 4,
“Analyzing Behavior Delay,” for more information. You also add mapping links to buses or
patterns to model communication.

Simulating and Analyzing a Refinement

You can use breakpoints for debugging the refinement, select viewports for collecting data,
and analyze results using Visualize. If you need to debug your refinement, you can run a
functional simulation to test the functionality of the refinement behavior models.

Protocol_down_converter model
mapped to ASIC1

Two behavior models in
the protocol_up_
converter mapped to the
CPU

Hierarchical
Refinement

Behavior
Refinement

Original behavior
March 2001 145 Product Version 2.1

VCC Architecture Evaluation Guide
Mapping Refinement
Specifying a Sub-Configuration for a Refinement

When refining your design, you can insert new behaviors that further refine the
communication or data transfer process. Refinement behaviors might require different
bindings than used in the original mapping diagram. To use a different configuration for a
refinement, add a sub-configuration to define the binding sequence.

Enter the new configuration cellview (the lib.cell:view of the configuration for the refinement
behavior hierarchy) to use for this refinement.

Note: A sub-configuration applies only to the hierarchy below this occurrence. It does not
apply to the occurrence where the configuration cellview is specified.
March 2001 146 Product Version 2.1

VCC Architecture Evaluation Guide
A
Pattern Descriptions

This appendix describes

■ Software-to-Hardware Communication

■ Hardware-to-Hardware Communication

■ Hardware-to-Software Communication

■ Software-to-Software Communication

Software-to-Hardware Communication

You implement communication from software blocks to hardware blocks using the register
mapped pattern or the shared memory pattern.
March 2001 147 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
Using Register Mapped Pattern

The register mapped pattern is for transferring data from the CPU across the bus directly to
a register on the ASIC resource.

The mapping of the behavior instances specifies RTOS1 for the source behavior and ASIC1
for the destination behavior. VCC uses the architecture topology to determine that the
communication goes across the bus.

The register address is an offset of the starting address of the port connecting the ASIC to
the bus. The register address is the value you set for the CommsDataAddress parameter
on the mapping connection.

Set the following parameter on the instance of the pattern.

Parameter Data Type Default Value

CommsDataAddress @VCC_Types.DataAddress floating

ASIC1

Register
Mapped

CommsDataAddress = 0x000a

B2B1

Bus1

RTOS1 CPU1
March 2001 148 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
The default value of floating for the CommsDataAddress means that if you do not specify
a value, the Address Allocator assigns one for you.

The following message sequence chart depicts token transfers and delays associated with
the register mapped pattern.

Using Shared Memory Pattern

The shared memory pattern is for transferring data to a memory on the bus. The data token
is first written to the memory, then a control signal activates the ASIC. Once the ASIC is
activated, it reads the data from the memory. This pattern is most appropriate for large data
tokens.

Destination BehaviorSource Behavior Data Bus

Transfer begins

Delay for
bus arbitration,
data transfer and
presence transfer
(if not disabled) Transfer is complete
March 2001 149 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
You can set the DataReadMode to control data fetch modeling for the Value() call.

Set the following parameters on the pattern instance for shared memory.

The following parameters are needed for the Links to Implementation flow.

Parameter Data Type Default Value

CommsMemory @VCC_Types.MemoryParticipant –

CommsDataAddress @VCC_Types.DataAddress floating

CommsPresenceAddress @VCC_Types.TriggerAddress floating

DataReadMode @VCC_Types.DataReadMode –

ASIC1

SharedMem

CommsDataAddress = 0x000a
CommsPresenceAddress = 0x000b
DataReadMode = Never

B2B1

Bus1

RTOS1 CPU1

MEM1

CommsMemory

PresenceBit-
Transaction = true
March 2001 150 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
The following message sequence chart depicts token transfers and delays associated with
the shared memory pattern.

Hardware-to-Hardware Communication

You can implement communication between hardware blocks using

Parameter Data Type Default Value

ReceiverMasterIndex Integer –

SenderMasterIndex Integer –

Destination
Behavior

Source
Behavior Data Bus Memory

Memory Write Begin

Delay for Bus
Arbitration and
Data Transfer

Delay for
Memory Write

Write Memory
Request

Memory Read Begin

Memory Write Complete

Event Transfer Begin

Delay for Bus
Arbitration and
Event Transfer

Delay for Bus
Arbitration and
Data Transfer

Transfer Complete

Read Memory
Request

Memory Read Ready

Memory Read Complete

Delay for
Memory Read
March 2001 151 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
■ Direct connect pattern

■ Register mapped pattern

■ Shared memory pattern

Register mapped and shared memory patterns are described in “Software-to-Hardware
Communication” on page 147. Direct connect is a pattern for communicating over dedicated
wires.

Using Direct Connect Pattern

When there is no arbitration for the communication channel, you can configure the hardware
resource to directly transfer data to another hardware resource over a dedicated wire. This
pattern is commonly used for communicating between behaviors mapped to the same ASIC.

Direct connect communication requires no additional parameters.

Hardware-to-Software Communication

You can implement communication from hardware blocks to software blocks using

■ Interrupt pattern

■ Polling pattern

The interrupt pattern is appropriate for communication that is not regularly scheduled and
needs real-time response from the software block. The polling pattern is useful when the
hardware block sends data to the software block at regular intervals.

Using Interrupt Patterns

By using an interrupt pattern, the Post operation from the source behavior mapped to
hardware issues an interrupt. VCC synthesizes an interrupt service routine (ISR) to handle
this interrupt, which activates the destination behavior.

The ISROverhead is a link parameter that specifies the delay of executing the ISR (the default
value of this parameter is zero).
March 2001 152 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
Interrupt Pattern

Choose the interrupt pattern if no data is being transferred.

When behavior B1 posts a value to B2, an interrupt occurs. The corresponding ISR activates
behavior B2.

The interrupt bus is specified as a parameter on the pattern instance. The
CommsInterruptNumber parameter on the mapping connection identifies the appropriate
interrupt task.

CommsInterruptNumber = 2
ASICInterruptIndex = 1
ISROverhead = 0.0

Interrupt

B2B1

Interrupt1

Bus1

RTOS1 CPU1

ASIC1

CommsInterruptBus

Note: The ASICInterruptIndex parameter and the
CommsInterruptBus are for the Links to
Implementation flow only.
March 2001 153 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
Set the following parameters on the pattern instance.

The following parameters are needed for the Links to Implementation flow.

The following message sequence chart depicts token transfers and delays associated with
the interrupt pattern.

Parameter Data Type Default Value

CommsInterruptNumber Integer
Numbers must be assigned
contiguously and must start at 1.

–

ISROverhead Real –

Parameter Data Type Default Value

CommsInterruptBus @VCC_Types.
InterruptBusParticipant

–

ASICInterruptIndex Integer –

Source
Behavior

Set Data

Interrupt
Bus

ISR
ISR
Scheduler

Destination
Behavior

Delay for
Bus
Arbitration

Interrupt
Request

Interrupt
Request

Delay for
Scheduler
Arbitration

Wants to Run

Run Now

Trigger
Behavior

ISR Task
Delay

Pattern HW
Impl
March 2001 154 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
Interrupt Register Mapped

If data must be transferred, you can use the interruptRegisterMapped pattern. This pattern
assumes the availability of data on a register of the ASIC. Once the ASIC behavior writes data
into the register, an interrupt signal is sent by the ASIC over the interrupt bus. The interrupt
task then reads the data from the register on the ASIC using the data bus.

When B1 posts a value to B2, an interrupt is issued. When B2 is activated by the ISR, B2
reads from the address specified.

The data address is an offset to the starting address of the port connecting the bus to the
ASIC. The data address is specified by the CommsDataAddress parameter on the mapping
connection.

Interrupt
register
mapped

CommsInterruptNumber = 2
CommsDataAddress = 0x000b
ASICInterruptIndex = 1
ISROverhead = 0.0

B2B1

Interrupt1

Bus1

RTOS1 CPU1

ASIC1

CommsInterruptBus

Note: The ASICInterruptIndex parameter and the
CommsInterruptBus are for the Links to
Implementation flow only.
March 2001 155 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
Set the following parameters on the pattern instance.

The following parameters are needed for the Links to Implementation flow.

The following message sequence chart depicts token transfers and delays associated with
the interrupt register mapped pattern.

Parameter Data Type Default Value

CommsInterruptNumber Integer

Numbers must be assigned contiguously
and must start at 1.

–

CommsDataAddress @VCC_Types.DataAddress floating

ISROverhead Real 0.0

Parameter Data Type Default Value

CommsInterruptBus @VCC_Types.InterruptBusParticipant –

ASICInterruptIndex Integer –
March 2001 156 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
Interrupt Shared Memory Pattern

If data must be transferred, you can use the interruptSharedMemory pattern. This pattern
makes the data available on a shared memory resource where the data is first written using
the data bus. (The ASIC can write into shared memory only by acting as a bus master.) Then

Source
Behavior

Set Data

Interrupt
Bus

ISR
ISR
Scheduler

Pattern HW
Impl

Data
Bus

Destination
Behavior

Delay for
Bus
Arbitration

Interrupt
Request

Interrupt
Request

Delay for
Scheduler
Arbitration

Wants to Run

Run Now

Trigger
Behavior

ISR Task
Delay

Delay for Bus
Arbitration and
Data Transfer

Data Request

Data Value

Read Request

Read Value
March 2001 157 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
the interrupt signal is sent over the interrupt bus. The interrupt task reads data from the
shared memory and activates the task.

The memory is specified as a parameter on the pattern instance. The data address is an
offset to the starting address of the port connecting the bus to the memory. The data address
is specified by the CommsDataAddress parameter on the mapping connection.

MEM1

Interrupt
shared
memory

CommsInterruptNumber = 2
CommsDataAddress = 0x000b
DataReadMode = Never
ISROverhead = 0.0
SenderMastersIndex = 2
ASICInterruptIndex = 3

B2B1

Interrupt1

Bus1

RTOS1 CPU1

ASIC1

CommsMemory

CommsInterruptBus

Note: The SenderMastersIndex and
ASICInterruptIndex parameters, and the
CommsInterruptBus are for the Links to
Implementation flow only.
March 2001 158 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
Set the following parameters on the pattern instance.

The following parameters are needed for the Links to Implementation flow.

Parameter Data Type Default Value

CommsInterruptNumber Integer
Numbers must be assigned contiguously
and must start at 1.

–

CommsMemory @VCC_Types.MemoryParticipant –

CommsDataAddress @VCC_Types.DataAddress floating

DataReadMode @VCC_Types.DataReadMode Never

ISROverhead Real 0.0

Parameter Data Type Default Value

CommsInterruptBus @VCC_Types.InterruptBusParticipant –

ASICInterruptIndex integer –

SenderMastersIndex Integer –
March 2001 159 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
Using Polling Pattern

You can configure the software block to poll the hardware block for data at specified intervals.
VCC synthesizes the polltaker task and schedules it on a scheduler resource that you specify.
The polltaker continually checks if a specific address is ready.

The polling task periodically reads from the poll address to see if any data is available. When
Behavior B1 writes to this address and the address is polled, the polling task activates
behavior B2. The polling task writes to the CommsAckAddress to acknowledge that the data
has been detected. B2 then reads the data from the CommsDataAddress.

The CommsPolltakerScheduler parameter on the pattern instance identifies the scheduler
resource on which the polltaker is scheduled. Any parameters required to schedule the
polltaker on the scheduler are also specified on the pattern instance. For example, the

MEM1

Polling

PollAddress = 0x000a
CommsDataAddress = 0x000d
CommsAckAddress = disabled
CommsPresenceAddress = 0x000b

B2B1

ASIC1

Bus1

RTOS1 CPU1 TIMER1

CommsPollTakerScheduler

task_priority = 3

CommsPollFrequency = 10.0
PollingStartTime = 0.0

Note: The CommsPollTakerScheduler
is for the Links to Implementation flow only.
March 2001 160 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
scheduler might be a priority-based scheduler, which requires that you also configure the
task_priority parameter.

The CommsPollFrequency parameter on the pattern instance specifies the frequency at
which the polltaker task is activated.

If the data is large, you can configure the data to be written to and read from shared memory.
To do this, you must configure an additional parameter, CommsMemory, on the pattern
instance. In this scenario, the CommsDataAddress identifies the offset into the memory
where the data resides.

If the hardware resource needs an acknowledgment that the communication completed, you
can configure CommsAcknowledgeAddress as a mapping parameter. By default the value
of this address is invalid, indicating an acknowledgment is not required. This identifies the
register on the ASIC for acknowledgment.

Note: The Polltaker task is not simulated—therefore the CommsAcknowledgeAddress is
not used in simulation.

Set the following parameters on the pattern instance.

The following parameter is needed for the Links to Implementation flow.

Parameter Data Type Default Value

CommsPollFrequency Real –

CommsAcknowledgeAddress @VCC_Types.
TriggerAddress

disabled

CommsDataAddress @VCC_Types.DataAddress floating

CommsMemory * @VCC_Types.
MemoryParticipant

 –

CommsPresenceAddress @VCC_Types.
TriggerAddress

floating

PollingStartTime Real –

* The PollingSharedMemory pattern requires this additional parameter.

Parameter Data Type Default Value

CommsPolltakerScheduler @VCC_Types.
SchedulerParticipant

–

March 2001 161 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
Software-to-Software Communication

You can implement communication between software blocks using

■ Unprotected pattern

■ Interrupt protected pattern

■ Semaphore protected pattern

Using Unprotected Pattern

You can configure the software blocks so that data integrity is not protected between data
reads and writes. This configuration is efficient for variables where protection is not needed,
such as when the variables are within the same software task. For example, for two behaviors
mapped to the same single-task resource. In this case, VCC synthesizes a single static
schedule of each behavior and the communication between these behaviors is implemented
as local variables.

The unprotected communication pattern requires no additional parameters.

Using Uninterruptable Protected Pattern

By masking interrupts, you can configure the software blocks to protect the data token from
being written while it is being read.

The uninterruptable protected communication pattern requires no additional parameters.
March 2001 162 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
Using Semaphore Protected Pattern

Using RTOS services called “semaphores,” you can configure the software block to protect
the data token from being written while it is being read.

The semaphore protected communication pattern requires no additional parameters.

Semaphore
Protected

B2B1

Bus1

RTOS1 CPU1
March 2001 163 Product Version 2.1

VCC Architecture Evaluation Guide
Pattern Descriptions
The following message sequence chart depicts token transfers and delays associated with
the semaphore protected pattern.

Source Behavior RTOS

Request semaphore

Read data
buffer for
this event

Grant semaphore
Request semaphore

Grant semaphore

Delay for
semaphore

Read data
for
previous
event

Write data
bufferRelease semaphore

Disable interrupts

Send Trigger

Enable interrupts

Request semaphore

Grant semaphore

Release semaphore

Destination Behavior
March 2001 164 Product Version 2.1

	Contents
	Preface
	Related Documents
	Typographic and Syntax Conventions

	Overview
	Integration-Based Design Flow
	Capturing Behavior
	Running a Functional Simulation
	Capturing Architecture
	Mapping Behavior to Architecture
	Running a Performance Simulation
	Refining Mapping Diagrams

	Exploration
	Derivative Design
	Hardware/Software Partitioning Changes
	“What If” Scenario

	Performance Models
	Performance Models of Architecture Components
	Typical Architecture Services

	Additional Architecture Services
	Behavior Performance on Software Architectures
	Execution Delays
	Delays Based on the Processor
	Delays Based on Memory Accesses
	Performance Modeling Styles
	DSL Performance Model
	Annotated C Performance Model
	Annotated C++ Performance Model

	Scheduling Shared Resources
	Performance Impact of Scheduling
	Scheduler Services
	Single-Threaded Scheduling Model
	RTOS Scheduler Services
	RTOS Models
	Nested Schedulers

	Communication Between Behaviors
	Bus Arbitration
	Arbitration Models

	Communication Patterns
	Performance Model of a Pattern
	Additional Services
	Reusability of Patterns
	Pattern Support for Fanouts
	Addressing

	Behavior Memories
	Using Behavior Memories
	Mapping the Memory Instance

	DMA Modeling
	Cache Modeling
	Behavior Timers
	Place the Timer Instance
	Declare the Timer Reference
	Associating a Timer Reference with a Timer Instance
	Interacting with the Timer from within Your Model
	Mapping the Timer

	Analyzing Behavior Delay
	Creating the Mapping Diagram
	Mapping Configurations

	Analyzing the Behavior Delay of a Hardware/Software Partition
	General Mapping Guidelines
	Using the Performance Viewlist
	Binding Performance Models Explicitly
	Mapping Parameters

	Analyzing Bus Traffic
	Refining Communication Patterns
	Pattern Categories
	Pattern Defaults
	Mapping Parameters
	Performance Analysis of Patterns

	Analyzing Memory Access
	Instruction and Data Fetch Analysis
	Performance Analysis of Behavior Memories
	Cache Analysis

	Analyzing Timer Accesses

	Performance Evaluation
	Simulating the Mapping Diagram
	Setting Up the Simulation
	Initializing and Running the Simulation
	Debugging Simulation Problems

	Exploring the Mapping Diagram
	Exporting Parameters
	Sweeping Parameters

	Analyzing Simulation Results
	Using Model Viewports
	Simulation Messages
	Comparing Functional and Performance Simulation Results
	Analyzing Testbench Results
	Analyzing Table Charts
	Analyzing Gantt Charts

	Mapping Refinement
	Protocol Down Converter Refinement
	Creating a Refinement Model
	Instantiating and Mapping a Refinement
	Simulating and Analyzing a Refinement
	Specifying a Sub-Configuration for a Refinement

	Pattern Descriptions
	Software-to-Hardware Communication
	Hardware-to-Hardware Communication
	Hardware-to-Software Communication
	Software-to-Software Communication

